
In a common emitter transistor amplifier, the output resistance is \[500{\text{ k}}\Omega \] and the current gain \[\beta = 49\]. If the power gain of the amplifier is \[5 \times {10^6}\], the input resistance is
A. \[325{\text{ k}}\Omega \]
B. \[165{\text{ k}}\Omega \]
C. \[{\text{198 k}}\Omega \]
D. \[240{\text{ k}}\Omega \]
Answer
219k+ views
Hint:In this question, we need to find the input resistance. For this, we will use the formula of power gain for a common emitter transistor amplifier. After simplification, we will get the final result.
Formula used:
The formula for power gain for a common emitter transistor amplifier is given below.
Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
Here, \[\beta \] is the current gain, \[{R_o}\] is the output resistance and \[{R_i}\] is the input resistance.
Complete step by step solution:
We know that the power gain for a common emitter transistor amplifier is Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
But the current gain \[\left( \beta \right)\]is 49.
Also, the output resistance is \[\left( {{R_o}} \right) = 500{\text{ k}}\Omega \]
But \[1{\text{ k}}\Omega = 1000{\text{ }}\Omega = {10^3}{\text{ }}\Omega \]
So, \[\left( {{R_o}} \right) = 500 \times 1000 = 500 \times {10^3}{\text{ }}\Omega \]
Also, power gain is \[5 \times {10^6}\]
So, we get
\[5 \times {10^6} = {\left( {49} \right)^2} \times \dfrac{{500 \times {{10}^3}{\text{ }}}}{{{R_i}}}\]
\[5 \times {10^6}\left( {{R_i}} \right) = {\left( {49} \right)^2} \times 500 \times {10^3}\]
By simplifying, we get
\[\left( {{R_i}} \right) = \dfrac{{{{\left( {49} \right)}^2} \times 500 \times {{10}^3}}}{{5 \times {{10}^6}}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times 100 \times {10^{3 - 6}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^2} \times {10^{ - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^{2 - 3}}\]
By simplifying further, we get
\[\left( {{R_i}} \right) = 2401 \times {10^{2 - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = 2401 \times {10^{ - 1}}\]
\[\Rightarrow \left( {{R_i}} \right) = \dfrac{{2401}}{{10}}\]
This gives, \[\left( {{R_i}} \right) = 240.1{\text{ }}\Omega \]
That is \[\left( {{R_i}} \right) \approx 240{\text{ }}\Omega \]
Hence, the value of input resistance is approximately \[240{\text{ }}\Omega \].
Therefore, the correct option is (D).
Additional information: We know that an amplifier is a type of electronic circuit often used to boost the strength of a poor input signal in terms of voltage, current, or power. So, the common emitter amplifier is a voltage amplifier that consists of three basic single-stage bipolar junction transistors. This amplifier's input is captured from the base terminal, its output is gathered from the collector terminal, and both terminals share the emitter terminal.
Note: Many students generally make mistakes in writing the formula of power gain of an amplifier. They generally write \[{\beta ^2} \times \dfrac{{{R_i}}}{{{R_o}}}\] instead of \[{\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]. Also, while doing calculations, they may get confused with the power of 10.
Formula used:
The formula for power gain for a common emitter transistor amplifier is given below.
Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
Here, \[\beta \] is the current gain, \[{R_o}\] is the output resistance and \[{R_i}\] is the input resistance.
Complete step by step solution:
We know that the power gain for a common emitter transistor amplifier is Power gain \[ = {\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]
But the current gain \[\left( \beta \right)\]is 49.
Also, the output resistance is \[\left( {{R_o}} \right) = 500{\text{ k}}\Omega \]
But \[1{\text{ k}}\Omega = 1000{\text{ }}\Omega = {10^3}{\text{ }}\Omega \]
So, \[\left( {{R_o}} \right) = 500 \times 1000 = 500 \times {10^3}{\text{ }}\Omega \]
Also, power gain is \[5 \times {10^6}\]
So, we get
\[5 \times {10^6} = {\left( {49} \right)^2} \times \dfrac{{500 \times {{10}^3}{\text{ }}}}{{{R_i}}}\]
\[5 \times {10^6}\left( {{R_i}} \right) = {\left( {49} \right)^2} \times 500 \times {10^3}\]
By simplifying, we get
\[\left( {{R_i}} \right) = \dfrac{{{{\left( {49} \right)}^2} \times 500 \times {{10}^3}}}{{5 \times {{10}^6}}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times 100 \times {10^{3 - 6}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^2} \times {10^{ - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = {\left( {49} \right)^2} \times {10^{2 - 3}}\]
By simplifying further, we get
\[\left( {{R_i}} \right) = 2401 \times {10^{2 - 3}}\]
\[\Rightarrow \left( {{R_i}} \right) = 2401 \times {10^{ - 1}}\]
\[\Rightarrow \left( {{R_i}} \right) = \dfrac{{2401}}{{10}}\]
This gives, \[\left( {{R_i}} \right) = 240.1{\text{ }}\Omega \]
That is \[\left( {{R_i}} \right) \approx 240{\text{ }}\Omega \]
Hence, the value of input resistance is approximately \[240{\text{ }}\Omega \].
Therefore, the correct option is (D).
Additional information: We know that an amplifier is a type of electronic circuit often used to boost the strength of a poor input signal in terms of voltage, current, or power. So, the common emitter amplifier is a voltage amplifier that consists of three basic single-stage bipolar junction transistors. This amplifier's input is captured from the base terminal, its output is gathered from the collector terminal, and both terminals share the emitter terminal.
Note: Many students generally make mistakes in writing the formula of power gain of an amplifier. They generally write \[{\beta ^2} \times \dfrac{{{R_i}}}{{{R_o}}}\] instead of \[{\beta ^2} \times \dfrac{{{R_o}}}{{{R_i}}}\]. Also, while doing calculations, they may get confused with the power of 10.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

