
If$A$ is $n\times n$ matrix, then $adj\,(adj.A)=$.
A. $|A{{|}^{n-1}}A|$
B. $|A{{|}^{n-2}}A|$
C. $|A{{|}^{n}}n|$
D. None of these.
Answer
162.9k+ views
Hint: The matrix of order $n\times n$ can be defined as a square matrix in which equal number of rows and columns are present.
To find $adj\,(adj.A)$, we will use the inverse matrix formula and matrix property $|adj.A|=\,|A{{|}^{n-1}}$ and \[A.{{A}^{-1}}=I\].
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[A.{{A}^{-1}}=I\], where $I$ is identity matrix.
$|adj.A|=\,|A{{|}^{n-1}}$
Complete step by step solution: We are given that $A$ is a square matrix, and we have to find the value of $adj\,(adj.A)$.
To derive the value of $adj\,(adj.A)$ we will use the formula of inverse matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and property \[A.{{A}^{-1}}=I\].
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]………..\[\left( 1 \right)\]
Using property \[A.{{A}^{-1}}=I\], we can derive the value of \[{{A}^{-1}}\],
\[{{A}^{-1}}=\dfrac{I}{A}\]………………..\[\left( 2 \right)\]
Comparing equation \[\left( 1 \right)\]and \[\left( 2 \right)\]we get,
\[\dfrac{I}{A}=\dfrac{adj(A)}{|A|}\,\]
Now We will find the value of determinant.
\[|A|I=A(adj.A)\,\]……\[\left( 3 \right)\]
We will replace $A$ with \[(adj.A)\,\]in the equation.
Then,
\[adj.A(adj(adj.A))\,=|adj.A|I\]
Now using property $|adj.A|=\,|A{{|}^{n-1}}$we can write,
\[adj.A(adj(adj.A))\,=|A{{|}^{n-1}}I\]
We will multiply the equation on both side by $A$,
\[A\left( adj.A(adj(adj.A)) \right)\,=A.|A{{|}^{n-1}}I\]
\[(A\,adj.A)(adj(adj.A))\,=|A{{|}^{n-1}}I.A\]
As we know that $I.A=A$ so,
\[(A\,adj.A)(adj(adj.A))\,=|A{{|}^{n-1}}A\]
From equation \[\left( 3 \right)\]we will substitute the value \[|A|I=A(adj.A)\,\],
\[|A|I.(adj(adj.A))\,=|A{{|}^{n-1}}A\]
\[(adj(adj.A))\,=\dfrac{|A{{|}^{n-1}}A}{|A|.I}\]
\[(adj(adj.A))\,=|A{{|}^{n-2}}.A\]
Now as we have to find the value of $adj\,(adj.A)$, we can say that it will be $A\,(adj.A)=|A|I$. The value of $adj\,(adj.A)$is \[(adj(adj.A))\,=|A{{|}^{n-2}}.A\] where$A$ is square matrix
Option ‘B’ is correct
Note:
The adjoint of a square matrix can be defined as the transpose of the co-factor of its matrix. The transpose of the matrix means interchanging the elements of rows with columns and elements of columns with rows.
When a matrix is multiplied by its adjoint then the product formed is identity matrix multiplied by the determinant of that matrix. If $A$ is the matrix then the relation will be written as$A\,(adj.A)=\,(adj.A).A=|A|I$.
To find $adj\,(adj.A)$, we will use the inverse matrix formula and matrix property $|adj.A|=\,|A{{|}^{n-1}}$ and \[A.{{A}^{-1}}=I\].
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[A.{{A}^{-1}}=I\], where $I$ is identity matrix.
$|adj.A|=\,|A{{|}^{n-1}}$
Complete step by step solution: We are given that $A$ is a square matrix, and we have to find the value of $adj\,(adj.A)$.
To derive the value of $adj\,(adj.A)$ we will use the formula of inverse matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and property \[A.{{A}^{-1}}=I\].
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]………..\[\left( 1 \right)\]
Using property \[A.{{A}^{-1}}=I\], we can derive the value of \[{{A}^{-1}}\],
\[{{A}^{-1}}=\dfrac{I}{A}\]………………..\[\left( 2 \right)\]
Comparing equation \[\left( 1 \right)\]and \[\left( 2 \right)\]we get,
\[\dfrac{I}{A}=\dfrac{adj(A)}{|A|}\,\]
Now We will find the value of determinant.
\[|A|I=A(adj.A)\,\]……\[\left( 3 \right)\]
We will replace $A$ with \[(adj.A)\,\]in the equation.
Then,
\[adj.A(adj(adj.A))\,=|adj.A|I\]
Now using property $|adj.A|=\,|A{{|}^{n-1}}$we can write,
\[adj.A(adj(adj.A))\,=|A{{|}^{n-1}}I\]
We will multiply the equation on both side by $A$,
\[A\left( adj.A(adj(adj.A)) \right)\,=A.|A{{|}^{n-1}}I\]
\[(A\,adj.A)(adj(adj.A))\,=|A{{|}^{n-1}}I.A\]
As we know that $I.A=A$ so,
\[(A\,adj.A)(adj(adj.A))\,=|A{{|}^{n-1}}A\]
From equation \[\left( 3 \right)\]we will substitute the value \[|A|I=A(adj.A)\,\],
\[|A|I.(adj(adj.A))\,=|A{{|}^{n-1}}A\]
\[(adj(adj.A))\,=\dfrac{|A{{|}^{n-1}}A}{|A|.I}\]
\[(adj(adj.A))\,=|A{{|}^{n-2}}.A\]
Now as we have to find the value of $adj\,(adj.A)$, we can say that it will be $A\,(adj.A)=|A|I$. The value of $adj\,(adj.A)$is \[(adj(adj.A))\,=|A{{|}^{n-2}}.A\] where$A$ is square matrix
Option ‘B’ is correct
Note:
The adjoint of a square matrix can be defined as the transpose of the co-factor of its matrix. The transpose of the matrix means interchanging the elements of rows with columns and elements of columns with rows.
When a matrix is multiplied by its adjoint then the product formed is identity matrix multiplied by the determinant of that matrix. If $A$ is the matrix then the relation will be written as$A\,(adj.A)=\,(adj.A).A=|A|I$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
