
If ${{z}_{1}}=\sqrt{3}+\iota \sqrt{3}$ and ${{z}_{2}}=\sqrt{3}+\iota $ , then the complex number \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\] lies in the
(a) First quadrant
(b) Second quadrant
(c) Third quadrant
(d) Fourth quadrant
Answer
124.2k+ views
Hint: We can use the conjugate multiplication of the denominator in both numerator and
denominator and hence simplify the complex number and find the real and imaginary part of the
complex number and check for the quadrant.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represents the x and y coordinates of
the point being represented by the complex number. Here, we have been given with two complex
numbers
${{z}_{1}}=\sqrt{3}+\iota \sqrt{3}............(i)$
and ${{z}_{2}}=\sqrt{3}+\iota .......(ii)$
Calculating \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\] by substituting the values from (i) and
(ii)
$\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota } \right)}^{50}}$
Multiplying and dividing by the conjugate of the ${{z}_{2}}$ in numerator and denominator and then
solving, we get,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota }\times \dfrac{\sqrt{3}-\iota }{\sqrt{3}-\iota } \right)}^{50}} \\
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3}+\iota
\sqrt{3} \right)\left( \sqrt{3}-\iota \right)}{\left( \sqrt{3}+\iota \right)\left( \sqrt{3}-\iota \right)}
\right]}^{50}} \\
\end{align}\]
Now on further simplification by multiplication we get,
\[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3} \right)\left( \sqrt{3}
\right)-\iota \sqrt{3}+\left( \iota \sqrt{3} \right)\left( \sqrt{3} \right)-\iota \left( \iota \sqrt{3}
\right)}{\left( \sqrt{3} \right)\left( \sqrt{3} \right)+\iota \left( \sqrt{3} \right)-\iota \left( \sqrt{3}
\right)-\iota \left( \iota \right)} \right]}^{50}}..................(iii)\]
As we know ${{\iota }^{2}}=-1$, substituting in (iii)
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{3-\iota \sqrt{3}+3\iota
+\sqrt{3}}{3+1} \right]}^{50}}\]
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( 3+\sqrt{3}
\right)+\iota \left( 3-\sqrt{3} \right)}{4} \right]}^{50}}\]
Now,
$\dfrac{3+\sqrt{3}}{4}\succ 0$ and $\dfrac{3-\sqrt{3}}{4}\succ 0$
Both the real and imaginary parts are positive and this means the point represented by the complex number lies in the first quadrant as x and y coordinates of a point in the first quadrant are always positive.
Hence, the complex number \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\]is in first quadrant.
Final answer is option (a).
Note: The chances of mistakes are if conjugate of denominator is not multiplied correctly or the sign of the conjugate in numerator or denominator is altered mistakenly or ${{\iota }^{2}}=-1$ is substituted
wrongly as 1. The caution must be taken for interpreting the point’s position in the quadrant.
denominator and hence simplify the complex number and find the real and imaginary part of the
complex number and check for the quadrant.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represents the x and y coordinates of
the point being represented by the complex number. Here, we have been given with two complex
numbers
${{z}_{1}}=\sqrt{3}+\iota \sqrt{3}............(i)$
and ${{z}_{2}}=\sqrt{3}+\iota .......(ii)$
Calculating \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\] by substituting the values from (i) and
(ii)
$\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota } \right)}^{50}}$
Multiplying and dividing by the conjugate of the ${{z}_{2}}$ in numerator and denominator and then
solving, we get,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota }\times \dfrac{\sqrt{3}-\iota }{\sqrt{3}-\iota } \right)}^{50}} \\
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3}+\iota
\sqrt{3} \right)\left( \sqrt{3}-\iota \right)}{\left( \sqrt{3}+\iota \right)\left( \sqrt{3}-\iota \right)}
\right]}^{50}} \\
\end{align}\]
Now on further simplification by multiplication we get,
\[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3} \right)\left( \sqrt{3}
\right)-\iota \sqrt{3}+\left( \iota \sqrt{3} \right)\left( \sqrt{3} \right)-\iota \left( \iota \sqrt{3}
\right)}{\left( \sqrt{3} \right)\left( \sqrt{3} \right)+\iota \left( \sqrt{3} \right)-\iota \left( \sqrt{3}
\right)-\iota \left( \iota \right)} \right]}^{50}}..................(iii)\]
As we know ${{\iota }^{2}}=-1$, substituting in (iii)
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{3-\iota \sqrt{3}+3\iota
+\sqrt{3}}{3+1} \right]}^{50}}\]
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( 3+\sqrt{3}
\right)+\iota \left( 3-\sqrt{3} \right)}{4} \right]}^{50}}\]
Now,
$\dfrac{3+\sqrt{3}}{4}\succ 0$ and $\dfrac{3-\sqrt{3}}{4}\succ 0$
Both the real and imaginary parts are positive and this means the point represented by the complex number lies in the first quadrant as x and y coordinates of a point in the first quadrant are always positive.
Hence, the complex number \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\]is in first quadrant.
Final answer is option (a).
Note: The chances of mistakes are if conjugate of denominator is not multiplied correctly or the sign of the conjugate in numerator or denominator is altered mistakenly or ${{\iota }^{2}}=-1$ is substituted
wrongly as 1. The caution must be taken for interpreting the point’s position in the quadrant.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
