
: If \[{z_1} = 1 + 2i\], \[{z_2} = 2 + 3i\], \[{z_3} = 3 + 4i\] then \[{z_1}\], \[{z_2}\], \[{z_3}\] represent the vertices of a/an [Orissa JEE \[2004\]]
A) Equilateral triangle
B) Isosceles triangle
C) Right angled triangle
D) None of these
Answer
220.2k+ views
Hint: in this question we have to find the given point represent whether collinear point or vertices of triangle. In order to find this have to use the formula of area of triangle. If area becomes zero then points are collinear otherwise it represents triangle vertices.
Formula Used:Area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Complete step by step solution:Given: \[{z_1} = 1 + 2i\], \[{z_2} = 2 + 3i\]and\[{z_3} = 3 + 4i\] these are collinear
Now area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Expand determinant to get area of triangle
\[A = \dfrac{1}{2}({a_1}({b_2} - {b_3}) - {a_2}({b_1} - {b_3}) + {a_3}({b_1} - {b_2}))\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}1&2&1\\2&3&1\\3&4&1\end{array}} \right|\]
Expand the determinant
\[A = \dfrac{1}{2}(1(3 - 4) - 2(2 - 4) + 3(2 - 3))\]
\[A = \dfrac{1}{2}( - 1 + 4 - 3)\]
\[A = 0\]
We found area of triangle equal to zero so the point represents the collinear points.
Option ‘D’ is correct
Note: We have to remember that collinear point is a point which lies in same line. If all points lie in same line then it never form area so area of triangle is zero for collinear points. Complex number is a number which is a combination of real and imaginary number. So in combination number question we have to represent number as a combination of real and its imaginary part. Imaginary part is known as iota. Square of iota is equal to negative one.
Formula Used:Area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Complete step by step solution:Given: \[{z_1} = 1 + 2i\], \[{z_2} = 2 + 3i\]and\[{z_3} = 3 + 4i\] these are collinear
Now area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Expand determinant to get area of triangle
\[A = \dfrac{1}{2}({a_1}({b_2} - {b_3}) - {a_2}({b_1} - {b_3}) + {a_3}({b_1} - {b_2}))\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}1&2&1\\2&3&1\\3&4&1\end{array}} \right|\]
Expand the determinant
\[A = \dfrac{1}{2}(1(3 - 4) - 2(2 - 4) + 3(2 - 3))\]
\[A = \dfrac{1}{2}( - 1 + 4 - 3)\]
\[A = 0\]
We found area of triangle equal to zero so the point represents the collinear points.
Option ‘D’ is correct
Note: We have to remember that collinear point is a point which lies in same line. If all points lie in same line then it never form area so area of triangle is zero for collinear points. Complex number is a number which is a combination of real and imaginary number. So in combination number question we have to represent number as a combination of real and its imaginary part. Imaginary part is known as iota. Square of iota is equal to negative one.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

