
If y = \[\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+....\infty }}}\] , then value of ( 2y – 1 ) \[\dfrac{dy}{dx}\] is equal to ?
(a) sin x
(b) cos x
(c) -sin x
(d) -cos x
Answer
219.6k+ views
Hint: This is a question of continuity and differentiability. The concept of differentiation deals with the idea of finding the derivative of a function. It is the process of determining the rate of change in functions on the basis of its variables. To solve this question, first, we square both sides of the question. Then we differentiate the equation and solve the equation then we find out the value of ( 2y – 1 ) $\dfrac{dy}{dx}$.
Formula Used: $\dfrac{d(\sin x)}{dx}=\cos x$
Complete step by step Solution:
We have given the question y = \[\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+....\infty }}}\]
We have to find the value of ( 2y – 1 ) $\dfrac{dy}{dx}$
Let y =\[\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+....\infty }}}\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Squaring both sides of equation (1), we get
${{y}^{2}}=\sin x+y$
Now differentiate both sides of the above equation w.r.t x, we get
$\dfrac{d}{dx}({{y}^{2}})=\dfrac{d}{dx}(\sin x+y)$
Solving both sides of the equation, we get
$2y.\dfrac{dy}{dx}=\cos x+\dfrac{dy}{dx}$
Now subtracting $\dfrac{dy}{dx}$from both sides , we get
$2y\dfrac{dy}{dx}-\dfrac{dy}{dx}=\cos x$
Solving the above equation, we get
( 2y – 1) $\dfrac{dy}{dx}$ = cos x
Hence ( 2y - 1 ) $\dfrac{dy}{dx}$ = cos x
Hence, the correct option is (b).
Note: Students make mistake in differentiating the equation . When we differentiate the equation , always remind to subtract 1 from the power . By doing a lot of practice, student will be able to solve the differentiation easily and accurately .
Formula Used: $\dfrac{d(\sin x)}{dx}=\cos x$
Complete step by step Solution:
We have given the question y = \[\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+....\infty }}}\]
We have to find the value of ( 2y – 1 ) $\dfrac{dy}{dx}$
Let y =\[\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+....\infty }}}\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Squaring both sides of equation (1), we get
${{y}^{2}}=\sin x+y$
Now differentiate both sides of the above equation w.r.t x, we get
$\dfrac{d}{dx}({{y}^{2}})=\dfrac{d}{dx}(\sin x+y)$
Solving both sides of the equation, we get
$2y.\dfrac{dy}{dx}=\cos x+\dfrac{dy}{dx}$
Now subtracting $\dfrac{dy}{dx}$from both sides , we get
$2y\dfrac{dy}{dx}-\dfrac{dy}{dx}=\cos x$
Solving the above equation, we get
( 2y – 1) $\dfrac{dy}{dx}$ = cos x
Hence ( 2y - 1 ) $\dfrac{dy}{dx}$ = cos x
Hence, the correct option is (b).
Note: Students make mistake in differentiating the equation . When we differentiate the equation , always remind to subtract 1 from the power . By doing a lot of practice, student will be able to solve the differentiation easily and accurately .
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

