
If $y = \sin^{ - 1}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right)$. Then what is the value of $\dfrac{{dy}}{{dx}}$?
A. $\dfrac{4}{{\left( {1 - {x^2}} \right)}}$
B. $\dfrac{4}{{\left( {1 + {x^2}} \right)}}$
C. $\dfrac{1}{{\left( {1 + {x^2}} \right)}}$
D. $\dfrac{{ - 4}}{{\left( {1 + {x^2}} \right)}}$
Answer
217.8k+ views
Hint: Solve the given trigonometric equation by substituting $x = \tan\theta $. Further simplify the equation using the identities of $\sin 2A$ and $\cos 2A$. Then substitute the value of $\theta $ and simplify the equation. In the end, differentiate the equation with respect to $x$ and get the required answer.
Formula Used:
$\sin 2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos 2A = \dfrac{{1 + \tan^{2}A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $y = \sin^{ - 1}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right)$.
Let’s simplify the above equation.
Substitute $x = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + \tan^{2}\theta }}{{1 - \tan^{2}\theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \cos^{ - 1}\left( {\dfrac{{1 - \tan^{2}\theta }}{{1 + \tan^{2}\theta }}} \right)$ $\because \sec^{ - 1}A = \cos^{ - 1}\left( {\dfrac{1}{A}} \right)$
Now apply the formulas of $\sin 2A$, and $\cos 2A$.
We get,
$y = \sin^{ - 1}\left( {\sin2\theta } \right) + \cos^{ - 1}\left( {\cos2\theta } \right)$
Now apply the inverse trigonometric rules $\sin^{ - 1}\left( {\sin A} \right) = A$, and $\cos^{ - 1}\left( {\cos A} \right) = A$.
$y = 2\theta + 2\theta $
$ \Rightarrow y = 4\theta $
Resubstitute the value of $\theta $.
$y = 4\tan^{ - 1}x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right)$
Apply the formula of a derivative $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dx}} = 4\left( {\dfrac{1}{{1 + {x^2}}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{{\left( {1 + {x^2}} \right)}}$
Option ‘B’ is correct
Note: The first principle of differentiation can also be used to help solve the problem. Trigonometric identities and formulas are used to simplify the function in the questions, and basic differentiation results are then used to determine the right answer. When changing a variable's value, we must be careful.
Formula Used:
$\sin 2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos 2A = \dfrac{{1 + \tan^{2}A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $y = \sin^{ - 1}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right)$.
Let’s simplify the above equation.
Substitute $x = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + \tan^{2}\theta }}{{1 - \tan^{2}\theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \cos^{ - 1}\left( {\dfrac{{1 - \tan^{2}\theta }}{{1 + \tan^{2}\theta }}} \right)$ $\because \sec^{ - 1}A = \cos^{ - 1}\left( {\dfrac{1}{A}} \right)$
Now apply the formulas of $\sin 2A$, and $\cos 2A$.
We get,
$y = \sin^{ - 1}\left( {\sin2\theta } \right) + \cos^{ - 1}\left( {\cos2\theta } \right)$
Now apply the inverse trigonometric rules $\sin^{ - 1}\left( {\sin A} \right) = A$, and $\cos^{ - 1}\left( {\cos A} \right) = A$.
$y = 2\theta + 2\theta $
$ \Rightarrow y = 4\theta $
Resubstitute the value of $\theta $.
$y = 4\tan^{ - 1}x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right)$
Apply the formula of a derivative $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dx}} = 4\left( {\dfrac{1}{{1 + {x^2}}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{{\left( {1 + {x^2}} \right)}}$
Option ‘B’ is correct
Note: The first principle of differentiation can also be used to help solve the problem. Trigonometric identities and formulas are used to simplify the function in the questions, and basic differentiation results are then used to determine the right answer. When changing a variable's value, we must be careful.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

