
If $y = \sin^{ - 1}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right)$. Then what is the value of $\dfrac{{dy}}{{dx}}$?
A. $\dfrac{4}{{\left( {1 - {x^2}} \right)}}$
B. $\dfrac{4}{{\left( {1 + {x^2}} \right)}}$
C. $\dfrac{1}{{\left( {1 + {x^2}} \right)}}$
D. $\dfrac{{ - 4}}{{\left( {1 + {x^2}} \right)}}$
Answer
232.8k+ views
Hint: Solve the given trigonometric equation by substituting $x = \tan\theta $. Further simplify the equation using the identities of $\sin 2A$ and $\cos 2A$. Then substitute the value of $\theta $ and simplify the equation. In the end, differentiate the equation with respect to $x$ and get the required answer.
Formula Used:
$\sin 2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos 2A = \dfrac{{1 + \tan^{2}A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $y = \sin^{ - 1}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right)$.
Let’s simplify the above equation.
Substitute $x = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + \tan^{2}\theta }}{{1 - \tan^{2}\theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \cos^{ - 1}\left( {\dfrac{{1 - \tan^{2}\theta }}{{1 + \tan^{2}\theta }}} \right)$ $\because \sec^{ - 1}A = \cos^{ - 1}\left( {\dfrac{1}{A}} \right)$
Now apply the formulas of $\sin 2A$, and $\cos 2A$.
We get,
$y = \sin^{ - 1}\left( {\sin2\theta } \right) + \cos^{ - 1}\left( {\cos2\theta } \right)$
Now apply the inverse trigonometric rules $\sin^{ - 1}\left( {\sin A} \right) = A$, and $\cos^{ - 1}\left( {\cos A} \right) = A$.
$y = 2\theta + 2\theta $
$ \Rightarrow y = 4\theta $
Resubstitute the value of $\theta $.
$y = 4\tan^{ - 1}x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right)$
Apply the formula of a derivative $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dx}} = 4\left( {\dfrac{1}{{1 + {x^2}}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{{\left( {1 + {x^2}} \right)}}$
Option ‘B’ is correct
Note: The first principle of differentiation can also be used to help solve the problem. Trigonometric identities and formulas are used to simplify the function in the questions, and basic differentiation results are then used to determine the right answer. When changing a variable's value, we must be careful.
Formula Used:
$\sin 2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos 2A = \dfrac{{1 + \tan^{2}A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $y = \sin^{ - 1}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right)$.
Let’s simplify the above equation.
Substitute $x = \tan\theta $ in the above equation.
$y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \sec^{ - 1}\left( {\dfrac{{1 + \tan^{2}\theta }}{{1 - \tan^{2}\theta }}} \right)$
$ \Rightarrow y = \sin^{ - 1}\left( {\dfrac{{2\tan\theta }}{{1 + \tan^{2}\theta }}} \right) + \cos^{ - 1}\left( {\dfrac{{1 - \tan^{2}\theta }}{{1 + \tan^{2}\theta }}} \right)$ $\because \sec^{ - 1}A = \cos^{ - 1}\left( {\dfrac{1}{A}} \right)$
Now apply the formulas of $\sin 2A$, and $\cos 2A$.
We get,
$y = \sin^{ - 1}\left( {\sin2\theta } \right) + \cos^{ - 1}\left( {\cos2\theta } \right)$
Now apply the inverse trigonometric rules $\sin^{ - 1}\left( {\sin A} \right) = A$, and $\cos^{ - 1}\left( {\cos A} \right) = A$.
$y = 2\theta + 2\theta $
$ \Rightarrow y = 4\theta $
Resubstitute the value of $\theta $.
$y = 4\tan^{ - 1}x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right)$
Apply the formula of a derivative $\dfrac{d}{{dx}}\left( {\tan^{ - 1}x} \right) = \dfrac{1}{{1 + {x^2}}}$.
$\dfrac{{dy}}{{dx}} = 4\left( {\dfrac{1}{{1 + {x^2}}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{{\left( {1 + {x^2}} \right)}}$
Option ‘B’ is correct
Note: The first principle of differentiation can also be used to help solve the problem. Trigonometric identities and formulas are used to simplify the function in the questions, and basic differentiation results are then used to determine the right answer. When changing a variable's value, we must be careful.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

