
If ${\text{ }}y = 5\cos x - 3\sin x$ then, prove that $\dfrac{{{d^2}y}}{{d{x^2}}} + y = 0$.
Answer
217.8k+ views
Hint : Differentiate the given equation twice then transpose to get the answer.
The given equation is ,
$
y = 5\cos x - 3\sin x{\text{ }}..............({\text{i}}) \\
\\
$
On differentiating the above equation we get,
$\dfrac{{dy}}{{dx}}{\text{ = }} - 5\sin x - 3\cos x{\text{ }}..............{\text{(ii)}}$
Differentiating equation (ii) with respect to $x$ we get,
$\dfrac{{{d^2}y}}{{d{x^2}}} = - 5\cos x + 3\sin x$
We can also write above equation as,
$\dfrac{{{d^2}y}}{{d{x^2}}} + 5\cos x - \sin x = 0$
$5\cos x - \sin x = y$ (From (i))
So,
$\dfrac{{{d^2}y}}{{d{x^2}}} + y = 0$
Hence proved.
Note :- Whenever we are struck with these types of problems of proof that with the help of differentiation then we just have to differentiate the number of times the highest degree is present in the equation and then try to transpose something to get the required equation. Alternatively we can also differentiate and get the value separately and then put the values of the given equation .
The given equation is ,
$
y = 5\cos x - 3\sin x{\text{ }}..............({\text{i}}) \\
\\
$
On differentiating the above equation we get,
$\dfrac{{dy}}{{dx}}{\text{ = }} - 5\sin x - 3\cos x{\text{ }}..............{\text{(ii)}}$
Differentiating equation (ii) with respect to $x$ we get,
$\dfrac{{{d^2}y}}{{d{x^2}}} = - 5\cos x + 3\sin x$
We can also write above equation as,
$\dfrac{{{d^2}y}}{{d{x^2}}} + 5\cos x - \sin x = 0$
$5\cos x - \sin x = y$ (From (i))
So,
$\dfrac{{{d^2}y}}{{d{x^2}}} + y = 0$
Hence proved.
Note :- Whenever we are struck with these types of problems of proof that with the help of differentiation then we just have to differentiate the number of times the highest degree is present in the equation and then try to transpose something to get the required equation. Alternatively we can also differentiate and get the value separately and then put the values of the given equation .
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

