
If \[{x^m}{y^n} = {\left( {x + y} \right)^{m + n}}\]. Then what is the value of \[\left( {\dfrac{{dy}}{{dx}}} \right)\] at \[x = 1\], and \[y = 2\]?
A. \[\dfrac{1}{2}\]
B. 2
C. \[\dfrac{{2m}}{n}\]
D. \[\dfrac{m}{{2n}}\]
Answer
161.1k+ views
Hint: In the given question, one exponential equation is given. To remove the exponents, take \[\log\] on both sides of the equation. Then differentiate the new equation with respect to \[x\]. By substituting the values \[x = 1\] and \[y = 2\] in the differential equation, we will find the value of \[\left( {\dfrac{{dy}}{{dx}}} \right)\] at \[x = 1\], and \[y = 2\].
Formula Used:
\[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\]
Complete step by step solution:
The given equation is \[{x^m}{y^n} = {\left( {x + y} \right)^{m + n}}\].
Let’s take \[\log\] on both sides of the above equation.
\[\log\left( {{x^m}{y^n}} \right) = \log{\left( {x + y} \right)^{m + n}}\]
Apply the formulas \[\log{\left( a \right)^m} = m\log\left( a \right)\] and \[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Again apply the formula \[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[ \Rightarrow \]\[m\log\left( x \right) + n\log\left( y \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Now differentiate the above equation with respect to \[x\].
\[m\dfrac{d}{{dx}}\left( {\log\left( x \right)} \right) + n\dfrac{d}{{dx}}\left( {\log\left( y \right)} \right) = \left( {m + n} \right)\dfrac{d}{{dx}}\left( {\log\left( {x + y} \right)} \right)\]
Apply the formula \[\dfrac{d}{{dx}}\left( {\logy} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\] and chain rule.
\[ \Rightarrow \]\[m\left( {\dfrac{1}{x}} \right) + n\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {m + n} \right)\left( {\dfrac{1}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \]\[\left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
Apply distributive property \[a\left( {b + c} \right) = ab + ac\]
\[ \Rightarrow \left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) + \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right)\]
Combine like terms
\[ \Rightarrow \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) - \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) - \left( {\dfrac{m}{x}} \right)\]
Simplify the above equation:
\[ \Rightarrow \]\[\left( {\dfrac{n}{y} - \dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{m + n}}{{x + y}} - \dfrac{m}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{n\left( {x + y} \right) - y\left( {m + n} \right)}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{x\left( {m + n} \right) - m\left( {x + y} \right)}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx + ny - my - ny}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{mx + nx - mx - my}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx - my}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{nx - my}}{{x\left( {x + y} \right)}}\]
Multiply both sides by \[\dfrac{{\left( {x + y} \right)}}{{\left( {nx - my} \right)}}\].
\[\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{1}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{y}{x}\]
Now substitute \[x = 1\] and \[y = 2\] in the above differential equation.
\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{2}{1}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = 2\]
Hence the correct option is option B.
Note: Students are often confused with the formula of \[\log\left( {{x^m}{y^n}} \right)\] whether \[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\] or \[\log\left( {{x^m}} \right) \cdot \log\left( {{y^n}} \right)\]. But the correct formula is \[\log\left( {{x^m}{y^n}} \right) = \log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\].
Formula Used:
\[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\]
Complete step by step solution:
The given equation is \[{x^m}{y^n} = {\left( {x + y} \right)^{m + n}}\].
Let’s take \[\log\] on both sides of the above equation.
\[\log\left( {{x^m}{y^n}} \right) = \log{\left( {x + y} \right)^{m + n}}\]
Apply the formulas \[\log{\left( a \right)^m} = m\log\left( a \right)\] and \[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Again apply the formula \[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[ \Rightarrow \]\[m\log\left( x \right) + n\log\left( y \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Now differentiate the above equation with respect to \[x\].
\[m\dfrac{d}{{dx}}\left( {\log\left( x \right)} \right) + n\dfrac{d}{{dx}}\left( {\log\left( y \right)} \right) = \left( {m + n} \right)\dfrac{d}{{dx}}\left( {\log\left( {x + y} \right)} \right)\]
Apply the formula \[\dfrac{d}{{dx}}\left( {\logy} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\] and chain rule.
\[ \Rightarrow \]\[m\left( {\dfrac{1}{x}} \right) + n\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {m + n} \right)\left( {\dfrac{1}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \]\[\left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
Apply distributive property \[a\left( {b + c} \right) = ab + ac\]
\[ \Rightarrow \left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) + \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right)\]
Combine like terms
\[ \Rightarrow \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) - \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) - \left( {\dfrac{m}{x}} \right)\]
Simplify the above equation:
\[ \Rightarrow \]\[\left( {\dfrac{n}{y} - \dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{m + n}}{{x + y}} - \dfrac{m}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{n\left( {x + y} \right) - y\left( {m + n} \right)}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{x\left( {m + n} \right) - m\left( {x + y} \right)}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx + ny - my - ny}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{mx + nx - mx - my}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx - my}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{nx - my}}{{x\left( {x + y} \right)}}\]
Multiply both sides by \[\dfrac{{\left( {x + y} \right)}}{{\left( {nx - my} \right)}}\].
\[\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{1}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{y}{x}\]
Now substitute \[x = 1\] and \[y = 2\] in the above differential equation.
\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{2}{1}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = 2\]
Hence the correct option is option B.
Note: Students are often confused with the formula of \[\log\left( {{x^m}{y^n}} \right)\] whether \[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\] or \[\log\left( {{x^m}} \right) \cdot \log\left( {{y^n}} \right)\]. But the correct formula is \[\log\left( {{x^m}{y^n}} \right) = \log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
