
If \[{x^m}{y^n} = {\left( {x + y} \right)^{m + n}}\]. Then what is the value of \[\left( {\dfrac{{dy}}{{dx}}} \right)\] at \[x = 1\], and \[y = 2\]?
A. \[\dfrac{1}{2}\]
B. 2
C. \[\dfrac{{2m}}{n}\]
D. \[\dfrac{m}{{2n}}\]
Answer
233.1k+ views
Hint: In the given question, one exponential equation is given. To remove the exponents, take \[\log\] on both sides of the equation. Then differentiate the new equation with respect to \[x\]. By substituting the values \[x = 1\] and \[y = 2\] in the differential equation, we will find the value of \[\left( {\dfrac{{dy}}{{dx}}} \right)\] at \[x = 1\], and \[y = 2\].
Formula Used:
\[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\]
Complete step by step solution:
The given equation is \[{x^m}{y^n} = {\left( {x + y} \right)^{m + n}}\].
Let’s take \[\log\] on both sides of the above equation.
\[\log\left( {{x^m}{y^n}} \right) = \log{\left( {x + y} \right)^{m + n}}\]
Apply the formulas \[\log{\left( a \right)^m} = m\log\left( a \right)\] and \[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Again apply the formula \[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[ \Rightarrow \]\[m\log\left( x \right) + n\log\left( y \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Now differentiate the above equation with respect to \[x\].
\[m\dfrac{d}{{dx}}\left( {\log\left( x \right)} \right) + n\dfrac{d}{{dx}}\left( {\log\left( y \right)} \right) = \left( {m + n} \right)\dfrac{d}{{dx}}\left( {\log\left( {x + y} \right)} \right)\]
Apply the formula \[\dfrac{d}{{dx}}\left( {\logy} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\] and chain rule.
\[ \Rightarrow \]\[m\left( {\dfrac{1}{x}} \right) + n\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {m + n} \right)\left( {\dfrac{1}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \]\[\left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
Apply distributive property \[a\left( {b + c} \right) = ab + ac\]
\[ \Rightarrow \left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) + \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right)\]
Combine like terms
\[ \Rightarrow \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) - \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) - \left( {\dfrac{m}{x}} \right)\]
Simplify the above equation:
\[ \Rightarrow \]\[\left( {\dfrac{n}{y} - \dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{m + n}}{{x + y}} - \dfrac{m}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{n\left( {x + y} \right) - y\left( {m + n} \right)}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{x\left( {m + n} \right) - m\left( {x + y} \right)}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx + ny - my - ny}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{mx + nx - mx - my}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx - my}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{nx - my}}{{x\left( {x + y} \right)}}\]
Multiply both sides by \[\dfrac{{\left( {x + y} \right)}}{{\left( {nx - my} \right)}}\].
\[\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{1}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{y}{x}\]
Now substitute \[x = 1\] and \[y = 2\] in the above differential equation.
\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{2}{1}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = 2\]
Hence the correct option is option B.
Note: Students are often confused with the formula of \[\log\left( {{x^m}{y^n}} \right)\] whether \[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\] or \[\log\left( {{x^m}} \right) \cdot \log\left( {{y^n}} \right)\]. But the correct formula is \[\log\left( {{x^m}{y^n}} \right) = \log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\].
Formula Used:
\[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\]
Complete step by step solution:
The given equation is \[{x^m}{y^n} = {\left( {x + y} \right)^{m + n}}\].
Let’s take \[\log\] on both sides of the above equation.
\[\log\left( {{x^m}{y^n}} \right) = \log{\left( {x + y} \right)^{m + n}}\]
Apply the formulas \[\log{\left( a \right)^m} = m\log\left( a \right)\] and \[\log\left( {ab} \right) = \log\left( a \right) + \log\left( b \right)\]
\[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Again apply the formula \[\log{\left( a \right)^m} = m\log\left( a \right)\]
\[ \Rightarrow \]\[m\log\left( x \right) + n\log\left( y \right) = \left( {m + n} \right)\log\left( {x + y} \right)\]
Now differentiate the above equation with respect to \[x\].
\[m\dfrac{d}{{dx}}\left( {\log\left( x \right)} \right) + n\dfrac{d}{{dx}}\left( {\log\left( y \right)} \right) = \left( {m + n} \right)\dfrac{d}{{dx}}\left( {\log\left( {x + y} \right)} \right)\]
Apply the formula \[\dfrac{d}{{dx}}\left( {\logy} \right) = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\] and chain rule.
\[ \Rightarrow \]\[m\left( {\dfrac{1}{x}} \right) + n\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {m + n} \right)\left( {\dfrac{1}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow \]\[\left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {1 + \dfrac{{dy}}{{dx}}} \right)\]
Apply distributive property \[a\left( {b + c} \right) = ab + ac\]
\[ \Rightarrow \left( {\dfrac{m}{x}} \right) + \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) + \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right)\]
Combine like terms
\[ \Rightarrow \left( {\dfrac{n}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) - \left( {\dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \left( {\dfrac{{m + n}}{{x + y}}} \right) - \left( {\dfrac{m}{x}} \right)\]
Simplify the above equation:
\[ \Rightarrow \]\[\left( {\dfrac{n}{y} - \dfrac{{m + n}}{{x + y}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{m + n}}{{x + y}} - \dfrac{m}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{n\left( {x + y} \right) - y\left( {m + n} \right)}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{x\left( {m + n} \right) - m\left( {x + y} \right)}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx + ny - my - ny}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{mx + nx - mx - my}}{{x\left( {x + y} \right)}}\]
\[ \Rightarrow \]\[\left( {\dfrac{{nx - my}}{{y\left( {x + y} \right)}}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{{nx - my}}{{x\left( {x + y} \right)}}\]
Multiply both sides by \[\dfrac{{\left( {x + y} \right)}}{{\left( {nx - my} \right)}}\].
\[\left( {\dfrac{1}{y}} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{1}{x}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{y}{x}\]
Now substitute \[x = 1\] and \[y = 2\] in the above differential equation.
\[\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{2}{1}\]
\[ \Rightarrow \]\[\left( {\dfrac{{dy}}{{dx}}} \right) = 2\]
Hence the correct option is option B.
Note: Students are often confused with the formula of \[\log\left( {{x^m}{y^n}} \right)\] whether \[\log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\] or \[\log\left( {{x^m}} \right) \cdot \log\left( {{y^n}} \right)\]. But the correct formula is \[\log\left( {{x^m}{y^n}} \right) = \log\left( {{x^m}} \right) + \log\left( {{y^n}} \right)\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

