
If \[{x_i} > 0\], \[i = 1,2,3, \cdots ,n\] then find the minima value of \[\left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right)\].
A. \[{n^2}\]
B. \[ \ge {n^2}\]
C. \[ \le {n^2}\]
D. None of these
Answer
216.3k+ views
Hint:We know the arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\] and the harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\]. Then put the value of arithmetic mean and harmonic mean in \[A.M \ge H.M\]. From the above relation we can get value of \[\left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right)\].
Formula Used:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
The relation between the arithmetic mean and harmonic mean is \[A.M \ge H.M\].
Complete step by step solution:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
Now putting the value of arithmetic mean and harmonic mean in \[A.M \ge H.M\]
\[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n} \ge \dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\]
Cross multiply
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge n \cdot n\]
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge {n^2}\]
Hence the correct option is option B.
Note:Students often confused with the relation \[A.M \ge G.M \ge H.M\] and \[A.M > G.M > H.M\]. We apply the formula \[A.M \ge G.M \ge H.M\] if all numbers are positive and apply the formula \[A.M > G.M > H.M\], if all numbers distinct.
Formula Used:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
The relation between the arithmetic mean and harmonic mean is \[A.M \ge H.M\].
Complete step by step solution:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
Now putting the value of arithmetic mean and harmonic mean in \[A.M \ge H.M\]
\[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n} \ge \dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\]
Cross multiply
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge n \cdot n\]
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge {n^2}\]
Hence the correct option is option B.
Note:Students often confused with the relation \[A.M \ge G.M \ge H.M\] and \[A.M > G.M > H.M\]. We apply the formula \[A.M \ge G.M \ge H.M\] if all numbers are positive and apply the formula \[A.M > G.M > H.M\], if all numbers distinct.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

