
If ${x^2} \ne n\pi + 1,n \in N$, then $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx$ is equal to
1. $\ln \left| {\cos \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
2. $\dfrac{1}{2}\ln \left| {\cos \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
3. $\ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
4. $\dfrac{1}{2}\ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
Answer
218.1k+ views
Hint: In this question, we are given the term to integrate $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx$, where ${x^2} \ne n\pi + 1,n \in N$. First, step is to let the angle \[{x^2} - 1 = p\](or any variable). The differentiate it and put the values in given integral. Apply trigonometric identities and you will get the direct trigonometric function for integration. In last, apply the integration formula.
Formula Used:
Trigonometric identity –
$\sin 2A = 2\sin A\cos A$
${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
Integration formula of trigonometric function –
$\int {\tan xdx = \log \left| {\sec x} \right| + c} $
Complete step by step Solution:
Let, the given integral be equal to $I$
Therefore, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx - - - - - \left( 1 \right)$
Let, \[{x^2} - 1 = p - - - - - \left( 2 \right)\]
Differentiate equation (2) with respect to $x$,
\[2x = \dfrac{{dp}}{{dx}}\]
\[xdx = \dfrac{{dp}}{2}\]
Put above value in equation (1),
\[I = \int {\sqrt {\dfrac{{2\sin p - \sin 2p}}{{2\sin p + \sin 2p}}} } \dfrac{{dp}}{2}\]
Using trigonometric identity, $\sin 2A = 2\sin A\cos A$
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p - 2\sin p\cos p}}{{2\sin p + 2\sin p\cos p}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p\left( {1 - \cos p} \right)}}{{2\sin p\left( {1 + \cos p} \right)}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{\left( {1 - \cos p} \right)}}{{\left( {1 + \cos p} \right)}}} } dp\]
Now, again using a trigonometric identity ${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
\[ = \dfrac{1}{2}\int {\sqrt {{{\tan }^2}\dfrac{p}{2}} } dp\]
\[ = \dfrac{1}{2}\int {\tan \dfrac{p}{2}} dp\]
Integrate the trigonometric function using integration formula $\int {\tan xdx = \log \left| {\sec x} \right| + c} $
\[ = \dfrac{1}{2}\left[ {\dfrac{{\log \left| {\sec \dfrac{p}{2}} \right|}}{{\left( {\dfrac{1}{2}} \right)}}} \right] + c\]
From equation (2),
\[ = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c\]
It implies that, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
Hence, the correct option is 3.
Note:To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply chain rule like we do in differentiation after doing the differentiation of whole function we multiply the differentiation of inner function. But in this we integrate the function and then divide the require term by the differentiation of inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Also, if limits would be there in integration then, to solve the limits in integration. First integrate the whole function then subtract the integration using lower limit from the integration using upper limit. For example, the required integration is $2x$ and we have the limit $2$to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Formula Used:
Trigonometric identity –
$\sin 2A = 2\sin A\cos A$
${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
Integration formula of trigonometric function –
$\int {\tan xdx = \log \left| {\sec x} \right| + c} $
Complete step by step Solution:
Let, the given integral be equal to $I$
Therefore, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx - - - - - \left( 1 \right)$
Let, \[{x^2} - 1 = p - - - - - \left( 2 \right)\]
Differentiate equation (2) with respect to $x$,
\[2x = \dfrac{{dp}}{{dx}}\]
\[xdx = \dfrac{{dp}}{2}\]
Put above value in equation (1),
\[I = \int {\sqrt {\dfrac{{2\sin p - \sin 2p}}{{2\sin p + \sin 2p}}} } \dfrac{{dp}}{2}\]
Using trigonometric identity, $\sin 2A = 2\sin A\cos A$
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p - 2\sin p\cos p}}{{2\sin p + 2\sin p\cos p}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p\left( {1 - \cos p} \right)}}{{2\sin p\left( {1 + \cos p} \right)}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{\left( {1 - \cos p} \right)}}{{\left( {1 + \cos p} \right)}}} } dp\]
Now, again using a trigonometric identity ${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
\[ = \dfrac{1}{2}\int {\sqrt {{{\tan }^2}\dfrac{p}{2}} } dp\]
\[ = \dfrac{1}{2}\int {\tan \dfrac{p}{2}} dp\]
Integrate the trigonometric function using integration formula $\int {\tan xdx = \log \left| {\sec x} \right| + c} $
\[ = \dfrac{1}{2}\left[ {\dfrac{{\log \left| {\sec \dfrac{p}{2}} \right|}}{{\left( {\dfrac{1}{2}} \right)}}} \right] + c\]
From equation (2),
\[ = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c\]
It implies that, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
Hence, the correct option is 3.
Note:To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply chain rule like we do in differentiation after doing the differentiation of whole function we multiply the differentiation of inner function. But in this we integrate the function and then divide the require term by the differentiation of inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Also, if limits would be there in integration then, to solve the limits in integration. First integrate the whole function then subtract the integration using lower limit from the integration using upper limit. For example, the required integration is $2x$ and we have the limit $2$to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

