
If ${x^2} \ne n\pi + 1,n \in N$, then $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx$ is equal to
1. $\ln \left| {\cos \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
2. $\dfrac{1}{2}\ln \left| {\cos \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
3. $\ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
4. $\dfrac{1}{2}\ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
Answer
164.4k+ views
Hint: In this question, we are given the term to integrate $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx$, where ${x^2} \ne n\pi + 1,n \in N$. First, step is to let the angle \[{x^2} - 1 = p\](or any variable). The differentiate it and put the values in given integral. Apply trigonometric identities and you will get the direct trigonometric function for integration. In last, apply the integration formula.
Formula Used:
Trigonometric identity –
$\sin 2A = 2\sin A\cos A$
${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
Integration formula of trigonometric function –
$\int {\tan xdx = \log \left| {\sec x} \right| + c} $
Complete step by step Solution:
Let, the given integral be equal to $I$
Therefore, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx - - - - - \left( 1 \right)$
Let, \[{x^2} - 1 = p - - - - - \left( 2 \right)\]
Differentiate equation (2) with respect to $x$,
\[2x = \dfrac{{dp}}{{dx}}\]
\[xdx = \dfrac{{dp}}{2}\]
Put above value in equation (1),
\[I = \int {\sqrt {\dfrac{{2\sin p - \sin 2p}}{{2\sin p + \sin 2p}}} } \dfrac{{dp}}{2}\]
Using trigonometric identity, $\sin 2A = 2\sin A\cos A$
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p - 2\sin p\cos p}}{{2\sin p + 2\sin p\cos p}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p\left( {1 - \cos p} \right)}}{{2\sin p\left( {1 + \cos p} \right)}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{\left( {1 - \cos p} \right)}}{{\left( {1 + \cos p} \right)}}} } dp\]
Now, again using a trigonometric identity ${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
\[ = \dfrac{1}{2}\int {\sqrt {{{\tan }^2}\dfrac{p}{2}} } dp\]
\[ = \dfrac{1}{2}\int {\tan \dfrac{p}{2}} dp\]
Integrate the trigonometric function using integration formula $\int {\tan xdx = \log \left| {\sec x} \right| + c} $
\[ = \dfrac{1}{2}\left[ {\dfrac{{\log \left| {\sec \dfrac{p}{2}} \right|}}{{\left( {\dfrac{1}{2}} \right)}}} \right] + c\]
From equation (2),
\[ = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c\]
It implies that, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
Hence, the correct option is 3.
Note:To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply chain rule like we do in differentiation after doing the differentiation of whole function we multiply the differentiation of inner function. But in this we integrate the function and then divide the require term by the differentiation of inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Also, if limits would be there in integration then, to solve the limits in integration. First integrate the whole function then subtract the integration using lower limit from the integration using upper limit. For example, the required integration is $2x$ and we have the limit $2$to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Formula Used:
Trigonometric identity –
$\sin 2A = 2\sin A\cos A$
${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
Integration formula of trigonometric function –
$\int {\tan xdx = \log \left| {\sec x} \right| + c} $
Complete step by step Solution:
Let, the given integral be equal to $I$
Therefore, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx - - - - - \left( 1 \right)$
Let, \[{x^2} - 1 = p - - - - - \left( 2 \right)\]
Differentiate equation (2) with respect to $x$,
\[2x = \dfrac{{dp}}{{dx}}\]
\[xdx = \dfrac{{dp}}{2}\]
Put above value in equation (1),
\[I = \int {\sqrt {\dfrac{{2\sin p - \sin 2p}}{{2\sin p + \sin 2p}}} } \dfrac{{dp}}{2}\]
Using trigonometric identity, $\sin 2A = 2\sin A\cos A$
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p - 2\sin p\cos p}}{{2\sin p + 2\sin p\cos p}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{2\sin p\left( {1 - \cos p} \right)}}{{2\sin p\left( {1 + \cos p} \right)}}} } dp\]
\[ = \dfrac{1}{2}\int {\sqrt {\dfrac{{\left( {1 - \cos p} \right)}}{{\left( {1 + \cos p} \right)}}} } dp\]
Now, again using a trigonometric identity ${\tan ^2}A = \dfrac{{1 - \cos 2A}}{{1 + \cos 2A}}$
\[ = \dfrac{1}{2}\int {\sqrt {{{\tan }^2}\dfrac{p}{2}} } dp\]
\[ = \dfrac{1}{2}\int {\tan \dfrac{p}{2}} dp\]
Integrate the trigonometric function using integration formula $\int {\tan xdx = \log \left| {\sec x} \right| + c} $
\[ = \dfrac{1}{2}\left[ {\dfrac{{\log \left| {\sec \dfrac{p}{2}} \right|}}{{\left( {\dfrac{1}{2}} \right)}}} \right] + c\]
From equation (2),
\[ = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c\]
It implies that, $\int {x\sqrt {\dfrac{{2\sin \left( {{x^2} - 1} \right) - \sin 2\left( {{x^2} - 1} \right)}}{{2\sin \left( {{x^2} - 1} \right) + \sin 2\left( {{x^2} - 1} \right)}}} } dx = \ln \left| {\sec \left( {\dfrac{{{x^2} - 1}}{2}} \right)} \right| + c$
Hence, the correct option is 3.
Note:To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply chain rule like we do in differentiation after doing the differentiation of whole function we multiply the differentiation of inner function. But in this we integrate the function and then divide the require term by the differentiation of inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Also, if limits would be there in integration then, to solve the limits in integration. First integrate the whole function then subtract the integration using lower limit from the integration using upper limit. For example, the required integration is $2x$ and we have the limit $2$to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
