
If $x = a\sin 2\theta (1 + \cos 2\theta ),\,y = b\cos 2\theta (1 - \cos 2\theta )$ , then $\dfrac{{dy}}{{dx}} = $
A. $\dfrac{{b\tan \theta }}{a}$
B. $\dfrac{{a\tan \theta }}{b}$
C. $\dfrac{a}{{b\tan \theta }}$
D. $\dfrac{b}{{a\tan \theta }}$
Answer
219.9k+ views
Hint: The two variables $x,y$ are in terms of two trigonometric functions $\sin \theta ,\,\cos \theta $ so we will first simplify the right-hand side of the two variables by using trigonometric identities. Then we will differentiate each variable individually with respect to $\theta $ and then we will finally get the value of $\dfrac{{dy}}{{dx}}$ .
Complete step-by-step answer:
We are given,
$
x = a\sin 2\theta (1 + \cos 2\theta )\,\,\,\,\,\,...(1) \\
y = b\cos 2\theta (1 - \cos 2\theta )\,\,\,\,\,...(2) \\
$
Now, we know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 2{\cos ^2}\theta - 1$
Putting these values in $(1)$ , we get:
$
x = a2\sin \theta \cos \theta (1 + (2{\cos ^2}\theta - 1)) \\
\Rightarrow x = 2a\sin \theta \cos \theta (2{\cos ^2}\theta ) \\
\Rightarrow x = 4a\sin \theta {\cos ^3}\theta \\
$
Now differentiating both sides with respect to $\theta $ :
$
\dfrac{{dx}}{{d\theta }} = \dfrac{{d(4a\sin \theta {{\cos }^3}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta \dfrac{{d{{\cos }^3}\theta }}{d\theta } + {\cos ^3}\theta \dfrac{{d\sin \theta }}{{d\theta }}]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{du(x)v(x)}}{{dx}} = u(x)\dfrac{{dv(x)}}{{dx}} + v(x)\dfrac{{du(x)}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta ( - 3{\cos ^2}\theta \sin \theta ) + {\cos ^3}\theta \cos \theta ]\,\,\,\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x,\dfrac{{d\cos x}}{{dx}} = - \sin x \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a{\cos ^2}\theta ({\cos ^2}\theta - 3{\sin ^2}\theta )\,\,\,\,...(3) \\
$
We also know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 1 - 2{\sin ^2}\theta $
Putting these values in $(2)$ , we get –
$
y = b(1 - 2{\sin ^2}\theta )(1 - (1 - 2{\sin ^2}\theta )) \\
\Rightarrow y = b(1 - 2{\sin ^2}\theta )(2{\sin ^2}\theta ) \\
\Rightarrow y = 2b({\sin ^2}\theta - 2{\sin ^4}\theta ) \\
$
Differentiating both sides with respect to $\theta $:
\[
\dfrac{{dy}}{{d\theta }} = \dfrac{{d2b({{\sin }^2}\theta - 2{{\sin }^4}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b(\dfrac{{d{{\sin }^2}\theta }}{{d\theta }} - 2\dfrac{{d{{\sin }^4}\theta }}{{d\theta }}) \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b[2\sin \theta \cos \theta - 2(4{\sin ^3}\theta \cos \theta )]\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 4b\sin \theta \cos \theta (1 - 4{\sin ^2}\theta )\,\,\,\,\,...(4) \\
\]
Now, to find $\dfrac{{dy}}{{dx}}$ , divide $(4)$ by $(3)$ :
$
\dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{4b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{4a{{\cos }^2}\theta ({{\cos }^2}\theta - 3{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{a{{\cos }^2}\theta (1 - {{\sin }^2}\theta - 3{{\sin }^2}\theta )}}\,\,\,\,\,\because {\cos ^2}\theta + {\sin ^2}\theta = 1 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta (1 - 4{{\sin }^2}\theta )}}{{a\cos \theta (1 - 4{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\tan \theta }}{a}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
$
The correct option is option A
Note: We have two values of $\cos 2\theta $ in this solution. One is $\cos 2\theta = 2{\cos ^2}\theta - 1$ and the other is $1 - 2{\sin ^2}\theta $ , they both are derived from $\cos 2\theta = {\cos ^2} - {\sin ^2}\theta $ . They both are correct and we can use any one of them according to our requirements. Here, we have used both forms according to their relevance in simplifying the function.
Complete step-by-step answer:
We are given,
$
x = a\sin 2\theta (1 + \cos 2\theta )\,\,\,\,\,\,...(1) \\
y = b\cos 2\theta (1 - \cos 2\theta )\,\,\,\,\,...(2) \\
$
Now, we know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 2{\cos ^2}\theta - 1$
Putting these values in $(1)$ , we get:
$
x = a2\sin \theta \cos \theta (1 + (2{\cos ^2}\theta - 1)) \\
\Rightarrow x = 2a\sin \theta \cos \theta (2{\cos ^2}\theta ) \\
\Rightarrow x = 4a\sin \theta {\cos ^3}\theta \\
$
Now differentiating both sides with respect to $\theta $ :
$
\dfrac{{dx}}{{d\theta }} = \dfrac{{d(4a\sin \theta {{\cos }^3}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta \dfrac{{d{{\cos }^3}\theta }}{d\theta } + {\cos ^3}\theta \dfrac{{d\sin \theta }}{{d\theta }}]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{du(x)v(x)}}{{dx}} = u(x)\dfrac{{dv(x)}}{{dx}} + v(x)\dfrac{{du(x)}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta ( - 3{\cos ^2}\theta \sin \theta ) + {\cos ^3}\theta \cos \theta ]\,\,\,\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x,\dfrac{{d\cos x}}{{dx}} = - \sin x \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a{\cos ^2}\theta ({\cos ^2}\theta - 3{\sin ^2}\theta )\,\,\,\,...(3) \\
$
We also know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 1 - 2{\sin ^2}\theta $
Putting these values in $(2)$ , we get –
$
y = b(1 - 2{\sin ^2}\theta )(1 - (1 - 2{\sin ^2}\theta )) \\
\Rightarrow y = b(1 - 2{\sin ^2}\theta )(2{\sin ^2}\theta ) \\
\Rightarrow y = 2b({\sin ^2}\theta - 2{\sin ^4}\theta ) \\
$
Differentiating both sides with respect to $\theta $:
\[
\dfrac{{dy}}{{d\theta }} = \dfrac{{d2b({{\sin }^2}\theta - 2{{\sin }^4}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b(\dfrac{{d{{\sin }^2}\theta }}{{d\theta }} - 2\dfrac{{d{{\sin }^4}\theta }}{{d\theta }}) \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b[2\sin \theta \cos \theta - 2(4{\sin ^3}\theta \cos \theta )]\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 4b\sin \theta \cos \theta (1 - 4{\sin ^2}\theta )\,\,\,\,\,...(4) \\
\]
Now, to find $\dfrac{{dy}}{{dx}}$ , divide $(4)$ by $(3)$ :
$
\dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{4b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{4a{{\cos }^2}\theta ({{\cos }^2}\theta - 3{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{a{{\cos }^2}\theta (1 - {{\sin }^2}\theta - 3{{\sin }^2}\theta )}}\,\,\,\,\,\because {\cos ^2}\theta + {\sin ^2}\theta = 1 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta (1 - 4{{\sin }^2}\theta )}}{{a\cos \theta (1 - 4{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\tan \theta }}{a}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
$
The correct option is option A
Note: We have two values of $\cos 2\theta $ in this solution. One is $\cos 2\theta = 2{\cos ^2}\theta - 1$ and the other is $1 - 2{\sin ^2}\theta $ , they both are derived from $\cos 2\theta = {\cos ^2} - {\sin ^2}\theta $ . They both are correct and we can use any one of them according to our requirements. Here, we have used both forms according to their relevance in simplifying the function.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

