
If $x = a\sin 2\theta (1 + \cos 2\theta ),\,y = b\cos 2\theta (1 - \cos 2\theta )$ , then $\dfrac{{dy}}{{dx}} = $
A. $\dfrac{{b\tan \theta }}{a}$
B. $\dfrac{{a\tan \theta }}{b}$
C. $\dfrac{a}{{b\tan \theta }}$
D. $\dfrac{b}{{a\tan \theta }}$
Answer
232.5k+ views
Hint: The two variables $x,y$ are in terms of two trigonometric functions $\sin \theta ,\,\cos \theta $ so we will first simplify the right-hand side of the two variables by using trigonometric identities. Then we will differentiate each variable individually with respect to $\theta $ and then we will finally get the value of $\dfrac{{dy}}{{dx}}$ .
Complete step-by-step answer:
We are given,
$
x = a\sin 2\theta (1 + \cos 2\theta )\,\,\,\,\,\,...(1) \\
y = b\cos 2\theta (1 - \cos 2\theta )\,\,\,\,\,...(2) \\
$
Now, we know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 2{\cos ^2}\theta - 1$
Putting these values in $(1)$ , we get:
$
x = a2\sin \theta \cos \theta (1 + (2{\cos ^2}\theta - 1)) \\
\Rightarrow x = 2a\sin \theta \cos \theta (2{\cos ^2}\theta ) \\
\Rightarrow x = 4a\sin \theta {\cos ^3}\theta \\
$
Now differentiating both sides with respect to $\theta $ :
$
\dfrac{{dx}}{{d\theta }} = \dfrac{{d(4a\sin \theta {{\cos }^3}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta \dfrac{{d{{\cos }^3}\theta }}{d\theta } + {\cos ^3}\theta \dfrac{{d\sin \theta }}{{d\theta }}]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{du(x)v(x)}}{{dx}} = u(x)\dfrac{{dv(x)}}{{dx}} + v(x)\dfrac{{du(x)}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta ( - 3{\cos ^2}\theta \sin \theta ) + {\cos ^3}\theta \cos \theta ]\,\,\,\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x,\dfrac{{d\cos x}}{{dx}} = - \sin x \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a{\cos ^2}\theta ({\cos ^2}\theta - 3{\sin ^2}\theta )\,\,\,\,...(3) \\
$
We also know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 1 - 2{\sin ^2}\theta $
Putting these values in $(2)$ , we get –
$
y = b(1 - 2{\sin ^2}\theta )(1 - (1 - 2{\sin ^2}\theta )) \\
\Rightarrow y = b(1 - 2{\sin ^2}\theta )(2{\sin ^2}\theta ) \\
\Rightarrow y = 2b({\sin ^2}\theta - 2{\sin ^4}\theta ) \\
$
Differentiating both sides with respect to $\theta $:
\[
\dfrac{{dy}}{{d\theta }} = \dfrac{{d2b({{\sin }^2}\theta - 2{{\sin }^4}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b(\dfrac{{d{{\sin }^2}\theta }}{{d\theta }} - 2\dfrac{{d{{\sin }^4}\theta }}{{d\theta }}) \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b[2\sin \theta \cos \theta - 2(4{\sin ^3}\theta \cos \theta )]\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 4b\sin \theta \cos \theta (1 - 4{\sin ^2}\theta )\,\,\,\,\,...(4) \\
\]
Now, to find $\dfrac{{dy}}{{dx}}$ , divide $(4)$ by $(3)$ :
$
\dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{4b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{4a{{\cos }^2}\theta ({{\cos }^2}\theta - 3{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{a{{\cos }^2}\theta (1 - {{\sin }^2}\theta - 3{{\sin }^2}\theta )}}\,\,\,\,\,\because {\cos ^2}\theta + {\sin ^2}\theta = 1 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta (1 - 4{{\sin }^2}\theta )}}{{a\cos \theta (1 - 4{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\tan \theta }}{a}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
$
The correct option is option A
Note: We have two values of $\cos 2\theta $ in this solution. One is $\cos 2\theta = 2{\cos ^2}\theta - 1$ and the other is $1 - 2{\sin ^2}\theta $ , they both are derived from $\cos 2\theta = {\cos ^2} - {\sin ^2}\theta $ . They both are correct and we can use any one of them according to our requirements. Here, we have used both forms according to their relevance in simplifying the function.
Complete step-by-step answer:
We are given,
$
x = a\sin 2\theta (1 + \cos 2\theta )\,\,\,\,\,\,...(1) \\
y = b\cos 2\theta (1 - \cos 2\theta )\,\,\,\,\,...(2) \\
$
Now, we know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 2{\cos ^2}\theta - 1$
Putting these values in $(1)$ , we get:
$
x = a2\sin \theta \cos \theta (1 + (2{\cos ^2}\theta - 1)) \\
\Rightarrow x = 2a\sin \theta \cos \theta (2{\cos ^2}\theta ) \\
\Rightarrow x = 4a\sin \theta {\cos ^3}\theta \\
$
Now differentiating both sides with respect to $\theta $ :
$
\dfrac{{dx}}{{d\theta }} = \dfrac{{d(4a\sin \theta {{\cos }^3}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta \dfrac{{d{{\cos }^3}\theta }}{d\theta } + {\cos ^3}\theta \dfrac{{d\sin \theta }}{{d\theta }}]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{du(x)v(x)}}{{dx}} = u(x)\dfrac{{dv(x)}}{{dx}} + v(x)\dfrac{{du(x)}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta ( - 3{\cos ^2}\theta \sin \theta ) + {\cos ^3}\theta \cos \theta ]\,\,\,\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x,\dfrac{{d\cos x}}{{dx}} = - \sin x \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a{\cos ^2}\theta ({\cos ^2}\theta - 3{\sin ^2}\theta )\,\,\,\,...(3) \\
$
We also know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 1 - 2{\sin ^2}\theta $
Putting these values in $(2)$ , we get –
$
y = b(1 - 2{\sin ^2}\theta )(1 - (1 - 2{\sin ^2}\theta )) \\
\Rightarrow y = b(1 - 2{\sin ^2}\theta )(2{\sin ^2}\theta ) \\
\Rightarrow y = 2b({\sin ^2}\theta - 2{\sin ^4}\theta ) \\
$
Differentiating both sides with respect to $\theta $:
\[
\dfrac{{dy}}{{d\theta }} = \dfrac{{d2b({{\sin }^2}\theta - 2{{\sin }^4}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b(\dfrac{{d{{\sin }^2}\theta }}{{d\theta }} - 2\dfrac{{d{{\sin }^4}\theta }}{{d\theta }}) \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b[2\sin \theta \cos \theta - 2(4{\sin ^3}\theta \cos \theta )]\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 4b\sin \theta \cos \theta (1 - 4{\sin ^2}\theta )\,\,\,\,\,...(4) \\
\]
Now, to find $\dfrac{{dy}}{{dx}}$ , divide $(4)$ by $(3)$ :
$
\dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{4b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{4a{{\cos }^2}\theta ({{\cos }^2}\theta - 3{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{a{{\cos }^2}\theta (1 - {{\sin }^2}\theta - 3{{\sin }^2}\theta )}}\,\,\,\,\,\because {\cos ^2}\theta + {\sin ^2}\theta = 1 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta (1 - 4{{\sin }^2}\theta )}}{{a\cos \theta (1 - 4{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\tan \theta }}{a}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
$
The correct option is option A
Note: We have two values of $\cos 2\theta $ in this solution. One is $\cos 2\theta = 2{\cos ^2}\theta - 1$ and the other is $1 - 2{\sin ^2}\theta $ , they both are derived from $\cos 2\theta = {\cos ^2} - {\sin ^2}\theta $ . They both are correct and we can use any one of them according to our requirements. Here, we have used both forms according to their relevance in simplifying the function.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

