
If $x = a\sin 2\theta (1 + \cos 2\theta ),\,y = b\cos 2\theta (1 - \cos 2\theta )$ , then $\dfrac{{dy}}{{dx}} = $
A. $\dfrac{{b\tan \theta }}{a}$
B. $\dfrac{{a\tan \theta }}{b}$
C. $\dfrac{a}{{b\tan \theta }}$
D. $\dfrac{b}{{a\tan \theta }}$
Answer
163.2k+ views
Hint: The two variables $x,y$ are in terms of two trigonometric functions $\sin \theta ,\,\cos \theta $ so we will first simplify the right-hand side of the two variables by using trigonometric identities. Then we will differentiate each variable individually with respect to $\theta $ and then we will finally get the value of $\dfrac{{dy}}{{dx}}$ .
Complete step-by-step answer:
We are given,
$
x = a\sin 2\theta (1 + \cos 2\theta )\,\,\,\,\,\,...(1) \\
y = b\cos 2\theta (1 - \cos 2\theta )\,\,\,\,\,...(2) \\
$
Now, we know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 2{\cos ^2}\theta - 1$
Putting these values in $(1)$ , we get:
$
x = a2\sin \theta \cos \theta (1 + (2{\cos ^2}\theta - 1)) \\
\Rightarrow x = 2a\sin \theta \cos \theta (2{\cos ^2}\theta ) \\
\Rightarrow x = 4a\sin \theta {\cos ^3}\theta \\
$
Now differentiating both sides with respect to $\theta $ :
$
\dfrac{{dx}}{{d\theta }} = \dfrac{{d(4a\sin \theta {{\cos }^3}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta \dfrac{{d{{\cos }^3}\theta }}{d\theta } + {\cos ^3}\theta \dfrac{{d\sin \theta }}{{d\theta }}]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{du(x)v(x)}}{{dx}} = u(x)\dfrac{{dv(x)}}{{dx}} + v(x)\dfrac{{du(x)}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta ( - 3{\cos ^2}\theta \sin \theta ) + {\cos ^3}\theta \cos \theta ]\,\,\,\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x,\dfrac{{d\cos x}}{{dx}} = - \sin x \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a{\cos ^2}\theta ({\cos ^2}\theta - 3{\sin ^2}\theta )\,\,\,\,...(3) \\
$
We also know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 1 - 2{\sin ^2}\theta $
Putting these values in $(2)$ , we get –
$
y = b(1 - 2{\sin ^2}\theta )(1 - (1 - 2{\sin ^2}\theta )) \\
\Rightarrow y = b(1 - 2{\sin ^2}\theta )(2{\sin ^2}\theta ) \\
\Rightarrow y = 2b({\sin ^2}\theta - 2{\sin ^4}\theta ) \\
$
Differentiating both sides with respect to $\theta $:
\[
\dfrac{{dy}}{{d\theta }} = \dfrac{{d2b({{\sin }^2}\theta - 2{{\sin }^4}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b(\dfrac{{d{{\sin }^2}\theta }}{{d\theta }} - 2\dfrac{{d{{\sin }^4}\theta }}{{d\theta }}) \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b[2\sin \theta \cos \theta - 2(4{\sin ^3}\theta \cos \theta )]\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 4b\sin \theta \cos \theta (1 - 4{\sin ^2}\theta )\,\,\,\,\,...(4) \\
\]
Now, to find $\dfrac{{dy}}{{dx}}$ , divide $(4)$ by $(3)$ :
$
\dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{4b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{4a{{\cos }^2}\theta ({{\cos }^2}\theta - 3{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{a{{\cos }^2}\theta (1 - {{\sin }^2}\theta - 3{{\sin }^2}\theta )}}\,\,\,\,\,\because {\cos ^2}\theta + {\sin ^2}\theta = 1 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta (1 - 4{{\sin }^2}\theta )}}{{a\cos \theta (1 - 4{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\tan \theta }}{a}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
$
The correct option is option A
Note: We have two values of $\cos 2\theta $ in this solution. One is $\cos 2\theta = 2{\cos ^2}\theta - 1$ and the other is $1 - 2{\sin ^2}\theta $ , they both are derived from $\cos 2\theta = {\cos ^2} - {\sin ^2}\theta $ . They both are correct and we can use any one of them according to our requirements. Here, we have used both forms according to their relevance in simplifying the function.
Complete step-by-step answer:
We are given,
$
x = a\sin 2\theta (1 + \cos 2\theta )\,\,\,\,\,\,...(1) \\
y = b\cos 2\theta (1 - \cos 2\theta )\,\,\,\,\,...(2) \\
$
Now, we know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 2{\cos ^2}\theta - 1$
Putting these values in $(1)$ , we get:
$
x = a2\sin \theta \cos \theta (1 + (2{\cos ^2}\theta - 1)) \\
\Rightarrow x = 2a\sin \theta \cos \theta (2{\cos ^2}\theta ) \\
\Rightarrow x = 4a\sin \theta {\cos ^3}\theta \\
$
Now differentiating both sides with respect to $\theta $ :
$
\dfrac{{dx}}{{d\theta }} = \dfrac{{d(4a\sin \theta {{\cos }^3}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta \dfrac{{d{{\cos }^3}\theta }}{d\theta } + {\cos ^3}\theta \dfrac{{d\sin \theta }}{{d\theta }}]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{du(x)v(x)}}{{dx}} = u(x)\dfrac{{dv(x)}}{{dx}} + v(x)\dfrac{{du(x)}}{{dx}} \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a[\sin \theta ( - 3{\cos ^2}\theta \sin \theta ) + {\cos ^3}\theta \cos \theta ]\,\,\,\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x,\dfrac{{d\cos x}}{{dx}} = - \sin x \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = 4a{\cos ^2}\theta ({\cos ^2}\theta - 3{\sin ^2}\theta )\,\,\,\,...(3) \\
$
We also know the trigonometric identities $\sin 2\theta = 2\sin \theta \cos \theta ,\,\cos 2\theta = 1 - 2{\sin ^2}\theta $
Putting these values in $(2)$ , we get –
$
y = b(1 - 2{\sin ^2}\theta )(1 - (1 - 2{\sin ^2}\theta )) \\
\Rightarrow y = b(1 - 2{\sin ^2}\theta )(2{\sin ^2}\theta ) \\
\Rightarrow y = 2b({\sin ^2}\theta - 2{\sin ^4}\theta ) \\
$
Differentiating both sides with respect to $\theta $:
\[
\dfrac{{dy}}{{d\theta }} = \dfrac{{d2b({{\sin }^2}\theta - 2{{\sin }^4}\theta )}}{{d\theta }} \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b(\dfrac{{d{{\sin }^2}\theta }}{{d\theta }} - 2\dfrac{{d{{\sin }^4}\theta }}{{d\theta }}) \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 2b[2\sin \theta \cos \theta - 2(4{\sin ^3}\theta \cos \theta )]\,\,\,\,\,\,\,\because \dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},\dfrac{{d\sin x}}{{dx}} = \cos x \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 4b\sin \theta \cos \theta (1 - 4{\sin ^2}\theta )\,\,\,\,\,...(4) \\
\]
Now, to find $\dfrac{{dy}}{{dx}}$ , divide $(4)$ by $(3)$ :
$
\dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{4b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{4a{{\cos }^2}\theta ({{\cos }^2}\theta - 3{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta \cos \theta (1 - 4{{\sin }^2}\theta )}}{{a{{\cos }^2}\theta (1 - {{\sin }^2}\theta - 3{{\sin }^2}\theta )}}\,\,\,\,\,\because {\cos ^2}\theta + {\sin ^2}\theta = 1 \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sin \theta (1 - 4{{\sin }^2}\theta )}}{{a\cos \theta (1 - 4{{\sin }^2}\theta )}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\tan \theta }}{a}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \\
$
The correct option is option A
Note: We have two values of $\cos 2\theta $ in this solution. One is $\cos 2\theta = 2{\cos ^2}\theta - 1$ and the other is $1 - 2{\sin ^2}\theta $ , they both are derived from $\cos 2\theta = {\cos ^2} - {\sin ^2}\theta $ . They both are correct and we can use any one of them according to our requirements. Here, we have used both forms according to their relevance in simplifying the function.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
