
If \[x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)\]and \[y = a\sin t\], then what is the value of\[\dfrac{{dy}}{{dx}}\]?
A.\[\tan t\]
B.\[ - \tan t\]
C.\[\cot t\]
D.\[ - \cot t\]
Answer
161.1k+ views
Hint: First we will derivative \[x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)\] with respect to \[t\] using the formulas \[\dfrac{d}{{dx}}\cos x = - \sin x\], \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\] and \[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\]. Then we will simplify the equation. Again we will derivative \[y = a\sin t\] with respect to \[t\] using the formula \[\dfrac{d}{{dx}}\sin x = \cos x\]. After that we will apply the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}\] to get the required answer.
Formula used :
We will use the derivative formulas
\[\dfrac{d}{{dx}}\cos x = - \sin x\], \[\dfrac{d}{{dx}}\sin x = \cos x\],\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\],\[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\] ,\[\dfrac{d}{{dx}}x = 1\]and we will also use the chain rule, and also trigonometric formulas, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]and \[\sec x = \dfrac{1}{{\cos x}}\], \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],\[1 - {\sin ^2}t = {\cos ^2}t\]
Complete Step-by- Step Solution:
Given \[x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)\], and \[y = a\sin t\],
Now we will take the \[x\] value and differentiate with respect to \[t\] on both sides,
\[ \Rightarrow x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)\]
Now we will differentiate with respect to\[t\] on both sides,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)} \right)\],
Now will distribute the differentiation,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{d}{{dt}}\left( {\cos t} \right) + \dfrac{d}{{dt}}\log \tan \dfrac{t}{2}} \right)\]
Now we will apply derivative formulas i.e.,\[\dfrac{d}{{dx}}\cos x = - \sin x\],\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\] and also applying chain rule, then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}}\dfrac{d}{{dt}}\tan \dfrac{t}{2}} \right)\]
Now again we will use the derivative formula \[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\] and also chain rule,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}}\left( {{{\sec }^2}\dfrac{t}{2}} \right)\dfrac{d}{{dt}}\left( {\dfrac{t}{2}} \right)} \right)\]
Now again we will use the derivative formula i.e., \[\dfrac{d}{{dx}}x = 1\], we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}}\left( {{{\sec }^2}\dfrac{t}{2}} \right)\left( {\dfrac{1}{2}} \right)} \right)\]
Now we will simplify the expression using trigonometric formulas, i.e, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]and \[\sec x = \dfrac{1}{{\cos x}}\], we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\dfrac{{\sin \dfrac{t}{2}}}{{\cos \dfrac{t}{2}}}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}}} \right)\left( {\dfrac{1}{2}} \right)} \right)\]
Now we will further simplify, we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{{\cos \dfrac{t}{2}}}{{\sin \dfrac{t}{2}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}}} \right)\left( {\dfrac{1}{2}} \right)} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}}} \right)\]
Now we will use the trigonometric formula i.e., \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\], then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\sin t}}} \right)\]
Now we will simplify further, then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{1 - {{\sin }^2}t}}{{\sin t}}} \right)\]
Now we will again use trigonometric formula, I.e., \[1 - {\sin ^2}t = {\cos ^2}t\], then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)\]
Now we will take the \[y\] value and differentiate with respect to \[t\] on both sides,
\[y = a\sin t\]
Now differentiate with respect to \[t\] on both sides,
\[\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}a\sin t\]
Now we will take out the constant term, we will get,
\[\dfrac{{dy}}{{dt}} = a\dfrac{d}{{dt}}\sin t\]
Now we will use the derivative formula, i.e., \[\dfrac{d}{{dx}}\sin x = \cos x\], we will get,
\[\dfrac{{dy}}{{dt}} = a\cos t\]
Now we will divide both the results, we will get,
\[ \Rightarrow \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{{a\cos t}}{{a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)}}\]
Now we will eliminate the like terms, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin t}}{{\cos t}}\]
Now we will use the trigonometric formula i.e.,\[\tan x = \dfrac{{\sin x}}{{\cos x}}\], we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \tan t\].
The correct option is A.
Note: Students often do a common mistake. They used the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \cdot \dfrac{{dx}}{{dt}}\] which is an incorrect formula. The correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}\].
Formula used :
We will use the derivative formulas
\[\dfrac{d}{{dx}}\cos x = - \sin x\], \[\dfrac{d}{{dx}}\sin x = \cos x\],\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\],\[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\] ,\[\dfrac{d}{{dx}}x = 1\]and we will also use the chain rule, and also trigonometric formulas, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]and \[\sec x = \dfrac{1}{{\cos x}}\], \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],\[1 - {\sin ^2}t = {\cos ^2}t\]
Complete Step-by- Step Solution:
Given \[x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)\], and \[y = a\sin t\],
Now we will take the \[x\] value and differentiate with respect to \[t\] on both sides,
\[ \Rightarrow x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)\]
Now we will differentiate with respect to\[t\] on both sides,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {a\left( {\cos t + \log \tan \dfrac{t}{2}} \right)} \right)\],
Now will distribute the differentiation,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{d}{{dt}}\left( {\cos t} \right) + \dfrac{d}{{dt}}\log \tan \dfrac{t}{2}} \right)\]
Now we will apply derivative formulas i.e.,\[\dfrac{d}{{dx}}\cos x = - \sin x\],\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\] and also applying chain rule, then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}}\dfrac{d}{{dt}}\tan \dfrac{t}{2}} \right)\]
Now again we will use the derivative formula \[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\] and also chain rule,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}}\left( {{{\sec }^2}\dfrac{t}{2}} \right)\dfrac{d}{{dt}}\left( {\dfrac{t}{2}} \right)} \right)\]
Now again we will use the derivative formula i.e., \[\dfrac{d}{{dx}}x = 1\], we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}}\left( {{{\sec }^2}\dfrac{t}{2}} \right)\left( {\dfrac{1}{2}} \right)} \right)\]
Now we will simplify the expression using trigonometric formulas, i.e, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]and \[\sec x = \dfrac{1}{{\cos x}}\], we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\dfrac{{\sin \dfrac{t}{2}}}{{\cos \dfrac{t}{2}}}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}}} \right)\left( {\dfrac{1}{2}} \right)} \right)\]
Now we will further simplify, we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{{\cos \dfrac{t}{2}}}{{\sin \dfrac{t}{2}}}\left( {\dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}}} \right)\left( {\dfrac{1}{2}} \right)} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}}} \right)\]
Now we will use the trigonometric formula i.e., \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\], then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\sin t}}} \right)\]
Now we will simplify further, then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{1 - {{\sin }^2}t}}{{\sin t}}} \right)\]
Now we will again use trigonometric formula, I.e., \[1 - {\sin ^2}t = {\cos ^2}t\], then we will get,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)\]
Now we will take the \[y\] value and differentiate with respect to \[t\] on both sides,
\[y = a\sin t\]
Now differentiate with respect to \[t\] on both sides,
\[\dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}a\sin t\]
Now we will take out the constant term, we will get,
\[\dfrac{{dy}}{{dt}} = a\dfrac{d}{{dt}}\sin t\]
Now we will use the derivative formula, i.e., \[\dfrac{d}{{dx}}\sin x = \cos x\], we will get,
\[\dfrac{{dy}}{{dt}} = a\cos t\]
Now we will divide both the results, we will get,
\[ \Rightarrow \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{{a\cos t}}{{a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)}}\]
Now we will eliminate the like terms, we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin t}}{{\cos t}}\]
Now we will use the trigonometric formula i.e.,\[\tan x = \dfrac{{\sin x}}{{\cos x}}\], we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \tan t\].
The correct option is A.
Note: Students often do a common mistake. They used the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \cdot \dfrac{{dx}}{{dt}}\] which is an incorrect formula. The correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
