
If $x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty ,y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty ,{\text{ and z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $, then arg (x + yz) is equal to
$\left( a \right)$ 0
$\left( b \right)\pi - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
$\left( c \right) - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
$\left( d \right) - {\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 3 }}} \right)$
Answer
220.2k+ views
Hint: In this particular type of question use the concept that that if the multiplication of two or more numbers having same base is written as, ${a^p}{a^q} = {a^{p + q}}$so apply this in all the given equation, later on use the concept of infinite term G.P series formula which is given as, ${S_\infty } = \dfrac{a}{{1 - r}},r < 1$, and use the concept that arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $.......................... (1)
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $....................... (2)
And ${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $.................... (3)
Now first solve equation (1) we have,
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }}$.................. (4)
Now as we see that $\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{\dfrac{1}{9}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} = \dfrac{1}{2}$
Now from equation (4) we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }} = {9^{\dfrac{1}{2}}} = {\left( {{3^2}} \right)^{\dfrac{1}{2}}} = 3$
Now solve equation (2) we have,
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }}$.................. (5)
Now as we see that $\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{ - \dfrac{1}{9}}}{{\dfrac{1}{3}}} = - \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{{ - 1}}{3}}} = \dfrac{1}{4}$
Now from equation (5) we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }} = {4^{\dfrac{1}{4}}} = {\left( {{2^2}} \right)^{\dfrac{1}{4}}} = {2^{\dfrac{1}{2}}} = \sqrt 2 $
Now solve equation (3) we have,
${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $
Now expand this summation we have,
$ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $
Now as we see that $\dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{{1 + i}}$, common ratio (r) = $\dfrac{{\dfrac{1}{{{{\left( {1 + i} \right)}^2}}}}}{{\dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{{\left( {1 + i} \right)}}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
\[ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}}\]
Now simplify we have,
$ \Rightarrow z = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{i} = \dfrac{i}{{{i^2}}} = - i$, $\left[ {\because i = \sqrt { - 1} \Rightarrow {i^2} = - 1} \right]$
Now we have to find the argument of x + yz.
$ \Rightarrow x + yz = 3 + \sqrt 2 \left( { - i} \right) = 3 - i\sqrt 2 $
Now as we know that the arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right)$
Now as we know that tan (-x) = tan (x) so we have,
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of infinite series of G.P which is stated above, then use this formula to simplify all the given equations as above, then calculate the value of x + yz as above and then take the argument of x + yz, we will get the required answer.
Complete step-by-step answer:
Given equation
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $.......................... (1)
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $....................... (2)
And ${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $.................... (3)
Now first solve equation (1) we have,
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }}$.................. (4)
Now as we see that $\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{\dfrac{1}{9}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} = \dfrac{1}{2}$
Now from equation (4) we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }} = {9^{\dfrac{1}{2}}} = {\left( {{3^2}} \right)^{\dfrac{1}{2}}} = 3$
Now solve equation (2) we have,
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }}$.................. (5)
Now as we see that $\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{ - \dfrac{1}{9}}}{{\dfrac{1}{3}}} = - \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{{ - 1}}{3}}} = \dfrac{1}{4}$
Now from equation (5) we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }} = {4^{\dfrac{1}{4}}} = {\left( {{2^2}} \right)^{\dfrac{1}{4}}} = {2^{\dfrac{1}{2}}} = \sqrt 2 $
Now solve equation (3) we have,
${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $
Now expand this summation we have,
$ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $
Now as we see that $\dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{{1 + i}}$, common ratio (r) = $\dfrac{{\dfrac{1}{{{{\left( {1 + i} \right)}^2}}}}}{{\dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{{\left( {1 + i} \right)}}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
\[ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}}\]
Now simplify we have,
$ \Rightarrow z = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{i} = \dfrac{i}{{{i^2}}} = - i$, $\left[ {\because i = \sqrt { - 1} \Rightarrow {i^2} = - 1} \right]$
Now we have to find the argument of x + yz.
$ \Rightarrow x + yz = 3 + \sqrt 2 \left( { - i} \right) = 3 - i\sqrt 2 $
Now as we know that the arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right)$
Now as we know that tan (-x) = tan (x) so we have,
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of infinite series of G.P which is stated above, then use this formula to simplify all the given equations as above, then calculate the value of x + yz as above and then take the argument of x + yz, we will get the required answer.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

