
If $x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty ,y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty ,{\text{ and z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $, then arg (x + yz) is equal to
$\left( a \right)$ 0
$\left( b \right)\pi - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
$\left( c \right) - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
$\left( d \right) - {\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 3 }}} \right)$
Answer
154.2k+ views
Hint: In this particular type of question use the concept that that if the multiplication of two or more numbers having same base is written as, ${a^p}{a^q} = {a^{p + q}}$so apply this in all the given equation, later on use the concept of infinite term G.P series formula which is given as, ${S_\infty } = \dfrac{a}{{1 - r}},r < 1$, and use the concept that arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $.......................... (1)
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $....................... (2)
And ${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $.................... (3)
Now first solve equation (1) we have,
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }}$.................. (4)
Now as we see that $\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{\dfrac{1}{9}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} = \dfrac{1}{2}$
Now from equation (4) we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }} = {9^{\dfrac{1}{2}}} = {\left( {{3^2}} \right)^{\dfrac{1}{2}}} = 3$
Now solve equation (2) we have,
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }}$.................. (5)
Now as we see that $\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{ - \dfrac{1}{9}}}{{\dfrac{1}{3}}} = - \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{{ - 1}}{3}}} = \dfrac{1}{4}$
Now from equation (5) we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }} = {4^{\dfrac{1}{4}}} = {\left( {{2^2}} \right)^{\dfrac{1}{4}}} = {2^{\dfrac{1}{2}}} = \sqrt 2 $
Now solve equation (3) we have,
${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $
Now expand this summation we have,
$ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $
Now as we see that $\dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{{1 + i}}$, common ratio (r) = $\dfrac{{\dfrac{1}{{{{\left( {1 + i} \right)}^2}}}}}{{\dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{{\left( {1 + i} \right)}}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
\[ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}}\]
Now simplify we have,
$ \Rightarrow z = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{i} = \dfrac{i}{{{i^2}}} = - i$, $\left[ {\because i = \sqrt { - 1} \Rightarrow {i^2} = - 1} \right]$
Now we have to find the argument of x + yz.
$ \Rightarrow x + yz = 3 + \sqrt 2 \left( { - i} \right) = 3 - i\sqrt 2 $
Now as we know that the arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right)$
Now as we know that tan (-x) = tan (x) so we have,
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of infinite series of G.P which is stated above, then use this formula to simplify all the given equations as above, then calculate the value of x + yz as above and then take the argument of x + yz, we will get the required answer.
Complete step-by-step answer:
Given equation
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $.......................... (1)
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $....................... (2)
And ${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $.................... (3)
Now first solve equation (1) we have,
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }}$.................. (4)
Now as we see that $\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{\dfrac{1}{9}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} = \dfrac{1}{2}$
Now from equation (4) we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }} = {9^{\dfrac{1}{2}}} = {\left( {{3^2}} \right)^{\dfrac{1}{2}}} = 3$
Now solve equation (2) we have,
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }}$.................. (5)
Now as we see that $\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{ - \dfrac{1}{9}}}{{\dfrac{1}{3}}} = - \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{{ - 1}}{3}}} = \dfrac{1}{4}$
Now from equation (5) we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }} = {4^{\dfrac{1}{4}}} = {\left( {{2^2}} \right)^{\dfrac{1}{4}}} = {2^{\dfrac{1}{2}}} = \sqrt 2 $
Now solve equation (3) we have,
${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $
Now expand this summation we have,
$ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $
Now as we see that $\dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{{1 + i}}$, common ratio (r) = $\dfrac{{\dfrac{1}{{{{\left( {1 + i} \right)}^2}}}}}{{\dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{{\left( {1 + i} \right)}}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
\[ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}}\]
Now simplify we have,
$ \Rightarrow z = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{i} = \dfrac{i}{{{i^2}}} = - i$, $\left[ {\because i = \sqrt { - 1} \Rightarrow {i^2} = - 1} \right]$
Now we have to find the argument of x + yz.
$ \Rightarrow x + yz = 3 + \sqrt 2 \left( { - i} \right) = 3 - i\sqrt 2 $
Now as we know that the arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right)$
Now as we know that tan (-x) = tan (x) so we have,
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of infinite series of G.P which is stated above, then use this formula to simplify all the given equations as above, then calculate the value of x + yz as above and then take the argument of x + yz, we will get the required answer.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
