
If \[{u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^n}xdx} \], then what is the value of \[{u_n} + {u_{n - 2}}\]?
A. \[\dfrac{1}{{n - 1}}\]
B. \[\dfrac{1}{{n + 1}}\]
C. \[\dfrac{1}{{2n - 1}}\]
D. \[\dfrac{1}{{2n + 1}}\]
Answer
162.3k+ views
Hint: Here, a definite integral is given. First, rewrite the function \[{\tan ^n}x = {\tan ^{n - 2}}x{\tan ^2}x\]. Then, simplify the function by applying the trigonometric formula \[{\tan ^2}x = {\sec ^2}x - 1\]. After that, separate the terms by applying the integration formula \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\]. In the end, solve the integral by substitution method and apply the limits to get the required answer.
Formula Used:\[{\tan ^2}x = {\sec ^2}x - 1\]
\[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[{u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^n}xdx} \].
Rewrite \[{\tan ^n}x = {\tan ^{n - 2}}x{\tan ^2}x\] in the above integral.
\[{u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\tan }^2}xdx} \]
Simplify the function by using the trigonometric formula \[{\tan ^2}x = {\sec ^2}x - 1\].
\[{u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x\left( {{{\sec }^2}x - 1} \right)dx} \]
\[ \Rightarrow {u_n} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {{{\tan }^{n - 2}}x{{\sec }^2}x - {{\tan }^{n - 2}}x} \right]dx} \]
Separate the terms by applying the integration rule \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow {u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\sec }^2}xdx} - \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}xdx} \]
From the given equation we get \[{u_{n - 2}} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}xdx} \].
So,
\[ \Rightarrow {u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\sec }^2}xdx} - {u_{n - 2}}\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\sec }^2}xdx} \] \[.....\left( 1 \right)\]
Now substitute \[v = \tan x\] in the above integral.
Differentiate the substituted integral.
We get,
\[dv = {\sec ^2}xdx\]
Now calculate the changed limits of the integral.
At \[x = 0\]:
\[v = \tan 0\]
\[ \Rightarrow v = 0\]
At \[x = \dfrac{\pi }{4}\]:
\[v = \tan \dfrac{\pi }{4}\]
\[ \Rightarrow v = 1\]
So, we get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow {u_n} + {u_{n - 2}} = \int\limits_0^1 {{v^{n - 2}}dv} \]
Solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[ \Rightarrow {u_n} + {u_{n - 2}} = \left[ {\dfrac{{{v^{n - 2 + 1}}}}{{n - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \left[ {\dfrac{{{v^{n - 1}}}}{{n - 1}}} \right]_0^1\]
Apply the limits.
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{{{1^{n - 1}}}}{{n - 1}} - \dfrac{{{0^{n - 1}}}}{{n - 1}}\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{1}{{n - 1}} - \dfrac{0}{{n - 1}}\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{1}{{n - 1}} - 0\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{1}{{n - 1}}\]
Option ‘A’ is correct
Note: Students often do mistake and calculate the separate value of \[{u_{n - 2}}\] by using the given integral. Then, they add both integrals and try to solve them. Because of that, they get the wrong solution.
Formula Used:\[{\tan ^2}x = {\sec ^2}x - 1\]
\[\dfrac{d}{{dx}}\tan x = {\sec ^2}x\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[{u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^n}xdx} \].
Rewrite \[{\tan ^n}x = {\tan ^{n - 2}}x{\tan ^2}x\] in the above integral.
\[{u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\tan }^2}xdx} \]
Simplify the function by using the trigonometric formula \[{\tan ^2}x = {\sec ^2}x - 1\].
\[{u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x\left( {{{\sec }^2}x - 1} \right)dx} \]
\[ \Rightarrow {u_n} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {{{\tan }^{n - 2}}x{{\sec }^2}x - {{\tan }^{n - 2}}x} \right]dx} \]
Separate the terms by applying the integration rule \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow {u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\sec }^2}xdx} - \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}xdx} \]
From the given equation we get \[{u_{n - 2}} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}xdx} \].
So,
\[ \Rightarrow {u_n} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\sec }^2}xdx} - {u_{n - 2}}\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \int\limits_0^{\dfrac{\pi }{4}} {{{\tan }^{n - 2}}x{{\sec }^2}xdx} \] \[.....\left( 1 \right)\]
Now substitute \[v = \tan x\] in the above integral.
Differentiate the substituted integral.
We get,
\[dv = {\sec ^2}xdx\]
Now calculate the changed limits of the integral.
At \[x = 0\]:
\[v = \tan 0\]
\[ \Rightarrow v = 0\]
At \[x = \dfrac{\pi }{4}\]:
\[v = \tan \dfrac{\pi }{4}\]
\[ \Rightarrow v = 1\]
So, we get the equation \[\left( 1 \right)\] as follows:
\[ \Rightarrow {u_n} + {u_{n - 2}} = \int\limits_0^1 {{v^{n - 2}}dv} \]
Solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[ \Rightarrow {u_n} + {u_{n - 2}} = \left[ {\dfrac{{{v^{n - 2 + 1}}}}{{n - 2 + 1}}} \right]_0^1\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \left[ {\dfrac{{{v^{n - 1}}}}{{n - 1}}} \right]_0^1\]
Apply the limits.
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{{{1^{n - 1}}}}{{n - 1}} - \dfrac{{{0^{n - 1}}}}{{n - 1}}\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{1}{{n - 1}} - \dfrac{0}{{n - 1}}\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{1}{{n - 1}} - 0\]
\[ \Rightarrow {u_n} + {u_{n - 2}} = \dfrac{1}{{n - 1}}\]
Option ‘A’ is correct
Note: Students often do mistake and calculate the separate value of \[{u_{n - 2}}\] by using the given integral. Then, they add both integrals and try to solve them. Because of that, they get the wrong solution.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
