
If three vectors \[\overrightarrow{a}=12\widehat{i}+4\widehat{j}+3\widehat{k}\], \[\overrightarrow{b}=8\widehat{i}-12\widehat{j}-9\widehat{k}\] and \[\overrightarrow{c}=33\widehat{i}-4\widehat{j}-24\widehat{k}\] represents a cube, then its volume will be
A. \[616\]
B. \[308\]
C. \[154\]
D. None of these
Answer
232.8k+ views
Hint: In the above question we are to find the volume of the cube which is represented by three vectors. By using appropriate formulae (i.e. scalar triple product), the required solution is calculated.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors that represent the three axes that form a cube when produced in their respective planes in both directions.
The given vectors are
\[\overrightarrow{a}=12\widehat{i}+4\widehat{j}+3\widehat{k}\]
\[\overrightarrow{b}=8\widehat{i}-12\widehat{j}-9\widehat{k}\]
\[\overrightarrow{c}=33\widehat{i}-4\widehat{j}-24\widehat{k}\]
We know that the concept of calculating the volume of any 3D structure which has sides or faces is the scalar triple product of its sides or faces. I.e.,
\[\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \text{ }=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}\]
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
12 & 4 & 3 \\
8 & -12 & -9 \\
33 & -4 & -24 \\
\end{matrix} \right| \\
& \text{ }=12(12\times 24-4\times 9)-4(8\times -24+9\times 33)+3(8\times -4+12\times 33) \\
& \text{ }=12(288-36)-4(-192+297)+3(-32+396) \\
& \text{ }=12\times 252-4\times 105+3\times 364 \\
& \text{ }=3024-420+1092 \\
& \text{ }=3096 \\
\end{align}\]
Thus, Option (D) is correct.
Additional Information: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: Here we may go wrong with the vector identities and scalar triple product. Here, the scalar triple product is used for calculating the volume. By calculating the determinant of the matrix formed by the given vectors and their scalar product, the volume of the cube is obtained.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors that represent the three axes that form a cube when produced in their respective planes in both directions.
The given vectors are
\[\overrightarrow{a}=12\widehat{i}+4\widehat{j}+3\widehat{k}\]
\[\overrightarrow{b}=8\widehat{i}-12\widehat{j}-9\widehat{k}\]
\[\overrightarrow{c}=33\widehat{i}-4\widehat{j}-24\widehat{k}\]
We know that the concept of calculating the volume of any 3D structure which has sides or faces is the scalar triple product of its sides or faces. I.e.,
\[\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \text{ }=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}\]
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
12 & 4 & 3 \\
8 & -12 & -9 \\
33 & -4 & -24 \\
\end{matrix} \right| \\
& \text{ }=12(12\times 24-4\times 9)-4(8\times -24+9\times 33)+3(8\times -4+12\times 33) \\
& \text{ }=12(288-36)-4(-192+297)+3(-32+396) \\
& \text{ }=12\times 252-4\times 105+3\times 364 \\
& \text{ }=3024-420+1092 \\
& \text{ }=3096 \\
\end{align}\]
Thus, Option (D) is correct.
Additional Information: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: Here we may go wrong with the vector identities and scalar triple product. Here, the scalar triple product is used for calculating the volume. By calculating the determinant of the matrix formed by the given vectors and their scalar product, the volume of the cube is obtained.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

