
If the sides of a triangle are in the ratio \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\], then find the largest angle of the triangle.
A. \[{60^ \circ }\]
B. \[{75^ \circ }\]
C. \[{90^ \circ }\]
D. \[{120^ \circ }\]
Answer
162.9k+ views
Hint: From the ratio, we will find the length of the sides. Using the sides and cosine law, we will find all angles of the triangle. Then we will find the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIIT JEE Main Cutoff 2024

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Main Cut-Off for VNIT Nagpur 2025: Check All Rounds Cutoff Ranks

Other Pages
NEET 2025: All Major Changes in Application Process, Pattern and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025: Important Information and Key Updates

1 Billion in Rupees - Conversion, Solved Examples and FAQs

NEET 2025 Syllabus PDF by NTA (Released)

Important Days In June: What Do You Need To Know
