
If the sides of a triangle are in the ratio \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\], then find the largest angle of the triangle.
A. \[{60^ \circ }\]
B. \[{75^ \circ }\]
C. \[{90^ \circ }\]
D. \[{120^ \circ }\]
Answer
217.8k+ views
Hint: From the ratio, we will find the length of the sides. Using the sides and cosine law, we will find all angles of the triangle. Then we will find the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Recently Updated Pages
Excess Pressure Inside a Liquid Drop Explained

Fluid Pressure Explained: Definition, Formula & Examples

Impulse Momentum Theorem Explained: Formula, Examples & Applications

Inertial and Non-Inertial Frames of Reference Explained

Ionisation Energy and Ionisation Potential Explained

Area vs Volume: Key Differences Explained for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

