
If the sides of a triangle are in the ratio \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\], then find the largest angle of the triangle.
A. \[{60^ \circ }\]
B. \[{75^ \circ }\]
C. \[{90^ \circ }\]
D. \[{120^ \circ }\]
Answer
163.5k+ views
Hint: From the ratio, we will find the length of the sides. Using the sides and cosine law, we will find all angles of the triangle. Then we will find the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
