
If the pressure at half depth of a lake is equal to $\dfrac{2}{3}$ pressure at the bottom of the lake then what is the depth of the lake?
Answer
161.7k+ views
Hint:Given the pressure at half depth of a lake is equal to $\dfrac{2}{3}$ pressure at the bottom of the lake and we have to find the depth of the lake. We find the depth with the formula $P={{P}_{0}}+pgh$. By substituting the values in the formula according to the question and solving it, we are able to get the desirable value.
Formula Used:
To find the depth of lake, we use the formula $P={{P}_{0}}+pgh$
Where P is the pressure at depth below the surface.
${{P}_{0}}$ is the pressure at the surface.
$p$ is the density of the liquid.
G is the gravitational constant.
And h is the depth below the surface at which the pressure is measured.
Complete step by step solution:
We are given that the pressure at half depth of a lake is equal to $\dfrac{2}{3}$ pressure at the bottom of the lake. We know the pressure exerted by liquid is written as,
$P=h\rho g$
Then the pressure at half depth of lake = ${{P}_{0}}+pg\dfrac{h}{2}$
And the pressure exerted at the bottom of lake = $pgh+{{P}_{0}}$
Then the equation becomes,
${{P}_{0}}+pg\dfrac{h}{2}=\dfrac{2}{3}(pgh+{{P}_{0}}) \\ $
By cross multiplying the above equation, we get
$({{P}_{0}}+pg\dfrac{h}{2})3=2(pgh+{{P}_{0}})$
On opening the brackets and simplifying the above equation, we get
$3{{P}_{0}}+pg\dfrac{3}{2}=2pgh+2{{P}_{0}} \\ $
We get ${{P}_{0}}=\left( 2-\dfrac{3}{2} \right)pgh \\ $
That is ${{P}_{0}}=\dfrac{pgh}{2} \\ $
Then $h=\dfrac{2{{P}_{0}}}{pg} \\ $
We know ${{P}_{0}}={{10}^{5}}Pa \\ $
And $\rho ={{10}^{3}}kg/{{m}^{3}} \\ $
Then $h=\dfrac{2\times {{10}^{5}}Pa}{{{10}^{3}}kg/{{m}^{3}}\times 10m/{{s}^{2}}} \\ $
$\therefore h=20\,m$
Hence, depth of the lake = 20 m
Note: Remember that as the depth under the water surface increases the pressure also increases. This is due to as the depth increases, the amount of water over the swimmer increases and the pressure also increases.
Formula Used:
To find the depth of lake, we use the formula $P={{P}_{0}}+pgh$
Where P is the pressure at depth below the surface.
${{P}_{0}}$ is the pressure at the surface.
$p$ is the density of the liquid.
G is the gravitational constant.
And h is the depth below the surface at which the pressure is measured.
Complete step by step solution:
We are given that the pressure at half depth of a lake is equal to $\dfrac{2}{3}$ pressure at the bottom of the lake. We know the pressure exerted by liquid is written as,
$P=h\rho g$
Then the pressure at half depth of lake = ${{P}_{0}}+pg\dfrac{h}{2}$
And the pressure exerted at the bottom of lake = $pgh+{{P}_{0}}$
Then the equation becomes,
${{P}_{0}}+pg\dfrac{h}{2}=\dfrac{2}{3}(pgh+{{P}_{0}}) \\ $
By cross multiplying the above equation, we get
$({{P}_{0}}+pg\dfrac{h}{2})3=2(pgh+{{P}_{0}})$
On opening the brackets and simplifying the above equation, we get
$3{{P}_{0}}+pg\dfrac{3}{2}=2pgh+2{{P}_{0}} \\ $
We get ${{P}_{0}}=\left( 2-\dfrac{3}{2} \right)pgh \\ $
That is ${{P}_{0}}=\dfrac{pgh}{2} \\ $
Then $h=\dfrac{2{{P}_{0}}}{pg} \\ $
We know ${{P}_{0}}={{10}^{5}}Pa \\ $
And $\rho ={{10}^{3}}kg/{{m}^{3}} \\ $
Then $h=\dfrac{2\times {{10}^{5}}Pa}{{{10}^{3}}kg/{{m}^{3}}\times 10m/{{s}^{2}}} \\ $
$\therefore h=20\,m$
Hence, depth of the lake = 20 m
Note: Remember that as the depth under the water surface increases the pressure also increases. This is due to as the depth increases, the amount of water over the swimmer increases and the pressure also increases.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
