
If the potential gradient of two potentiometer wire is ${X_1}$ and ${X_2}$, the resistance per unit length is equal and the current flowing through them are ${I_1}$ and ${I_2}$. Then ${I_1}:{I_2}$ is:-
(A) ${X_1}:{X_2}$
(B) ${X_2}:{X_1}$
(C) ${X_1}^2:{X_2}^2$
(D) ${X_1}^3:{X_2}^3$
Answer
124.8k+ views
Hint: Potentiometer is a device used to compare the emfs of two cells.(or) to find the emf of a cell (or) to find the internal resistance of a cell (or) to measure potential difference.
Construction: A potentiometer consists of a uniform wire of length 10m arranged between A and B as 10 wires each of length 1m on a wooden board. The wire has specific resistance and low temperature coefficient of resistance. A meter scale is arranged parallel to the wires to measure the balancing length. The resistance of the total wire of the potentiometer is about 5Ω. A Jockey J can be moved on the wire. The balancing length is measured from the end which is connected to the positive terminal of the battery.
Principle: In null deflection position,
Unknown potential difference = Known potential difference.
When steady current passes through the uniform wire of the potentiometer, the potential difference across any part of the wire is directly proportional to the length of the wire.
Complete step by step answer:
1. Potential gradient for wire 1 is ${X_1} = {I_1}{R_1}$.
2. Potential gradient for wire 2 is ${X_2} = {I_2}{R_2}$
But here, resistance per unit length is equal that ${R_1} = {R_2}$
So, The ratios are:
$\Rightarrow$ $
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{\dfrac{{{X_1}}}{{{R_1}}}}}{{\dfrac{{{X_2}}}{{{R_2}}}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
$
hence, correct option is (a)
Note: Potential Gradient is the decrease in potential per unit length. It is calculated as V / L, where V is the potential difference between two points and L is the distance between two points. The longer the wire the lesser the potential gradient and the greater the sensitivity of the potentiometer.
Construction: A potentiometer consists of a uniform wire of length 10m arranged between A and B as 10 wires each of length 1m on a wooden board. The wire has specific resistance and low temperature coefficient of resistance. A meter scale is arranged parallel to the wires to measure the balancing length. The resistance of the total wire of the potentiometer is about 5Ω. A Jockey J can be moved on the wire. The balancing length is measured from the end which is connected to the positive terminal of the battery.
Principle: In null deflection position,
Unknown potential difference = Known potential difference.
When steady current passes through the uniform wire of the potentiometer, the potential difference across any part of the wire is directly proportional to the length of the wire.
Complete step by step answer:
1. Potential gradient for wire 1 is ${X_1} = {I_1}{R_1}$.
2. Potential gradient for wire 2 is ${X_2} = {I_2}{R_2}$
But here, resistance per unit length is equal that ${R_1} = {R_2}$
So, The ratios are:
$\Rightarrow$ $
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{\dfrac{{{X_1}}}{{{R_1}}}}}{{\dfrac{{{X_2}}}{{{R_2}}}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
$
hence, correct option is (a)
Note: Potential Gradient is the decrease in potential per unit length. It is calculated as V / L, where V is the potential difference between two points and L is the distance between two points. The longer the wire the lesser the potential gradient and the greater the sensitivity of the potentiometer.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main Login 2045: Step-by-Step Instructions and Details

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
