
If the potential gradient of two potentiometer wire is ${X_1}$ and ${X_2}$, the resistance per unit length is equal and the current flowing through them are ${I_1}$ and ${I_2}$. Then ${I_1}:{I_2}$ is:-
(A) ${X_1}:{X_2}$
(B) ${X_2}:{X_1}$
(C) ${X_1}^2:{X_2}^2$
(D) ${X_1}^3:{X_2}^3$
Answer
232.8k+ views
Hint: Potentiometer is a device used to compare the emfs of two cells.(or) to find the emf of a cell (or) to find the internal resistance of a cell (or) to measure potential difference.
Construction: A potentiometer consists of a uniform wire of length 10m arranged between A and B as 10 wires each of length 1m on a wooden board. The wire has specific resistance and low temperature coefficient of resistance. A meter scale is arranged parallel to the wires to measure the balancing length. The resistance of the total wire of the potentiometer is about 5Ω. A Jockey J can be moved on the wire. The balancing length is measured from the end which is connected to the positive terminal of the battery.
Principle: In null deflection position,
Unknown potential difference = Known potential difference.
When steady current passes through the uniform wire of the potentiometer, the potential difference across any part of the wire is directly proportional to the length of the wire.
Complete step by step answer:
1. Potential gradient for wire 1 is ${X_1} = {I_1}{R_1}$.
2. Potential gradient for wire 2 is ${X_2} = {I_2}{R_2}$
But here, resistance per unit length is equal that ${R_1} = {R_2}$
So, The ratios are:
$\Rightarrow$ $
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{\dfrac{{{X_1}}}{{{R_1}}}}}{{\dfrac{{{X_2}}}{{{R_2}}}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
$
hence, correct option is (a)
Note: Potential Gradient is the decrease in potential per unit length. It is calculated as V / L, where V is the potential difference between two points and L is the distance between two points. The longer the wire the lesser the potential gradient and the greater the sensitivity of the potentiometer.
Construction: A potentiometer consists of a uniform wire of length 10m arranged between A and B as 10 wires each of length 1m on a wooden board. The wire has specific resistance and low temperature coefficient of resistance. A meter scale is arranged parallel to the wires to measure the balancing length. The resistance of the total wire of the potentiometer is about 5Ω. A Jockey J can be moved on the wire. The balancing length is measured from the end which is connected to the positive terminal of the battery.
Principle: In null deflection position,
Unknown potential difference = Known potential difference.
When steady current passes through the uniform wire of the potentiometer, the potential difference across any part of the wire is directly proportional to the length of the wire.
Complete step by step answer:
1. Potential gradient for wire 1 is ${X_1} = {I_1}{R_1}$.
2. Potential gradient for wire 2 is ${X_2} = {I_2}{R_2}$
But here, resistance per unit length is equal that ${R_1} = {R_2}$
So, The ratios are:
$\Rightarrow$ $
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{\dfrac{{{X_1}}}{{{R_1}}}}}{{\dfrac{{{X_2}}}{{{R_2}}}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
$
hence, correct option is (a)
Note: Potential Gradient is the decrease in potential per unit length. It is calculated as V / L, where V is the potential difference between two points and L is the distance between two points. The longer the wire the lesser the potential gradient and the greater the sensitivity of the potentiometer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

