
If the matrix $\left[ \begin{matrix}
1 & 3 & \lambda +2 \\
2 & 4 & 8 \\
3 & 5 & 10 \\
\end{matrix} \right]$ is singular, then $\lambda $ =
A . -2
B . 4
C . 2
D . -4
Answer
163.2k+ views
Hint: We are given a matrix which is of order $3\times 3$and given that the matrix is a singular matrix. That means the determinant of the matrix is equal to zero. Thus, first we find the determinant of the given matrix and then we put it equal to zero and after simplifying it, we are able to get the value and choose the correct option.
Complete Step- by- step Solution:
Given matrix is $\left[ \begin{matrix}
1 & 3 & \lambda +2 \\
2 & 4 & 8 \\
3 & 5 & 10 \\
\end{matrix} \right]$
As the matrix is of the order $3\times 3$, so it contains 3 rows and 3 columns.
Now we find the determinant of the given square matrix and then equate it to zero.
We find the determinant by using the first row.
The determinant is
$[1[4\times 10-5\times 8]-3[2\times 10-3\times 8]+[\lambda +2][2\times 5-3\times 4]]$
Simplifying the above equation, we get
$[1[40-40]-3[20-24]+[\lambda +2][10-12]]$
Evaluating further, we get
$[12-2\lambda -4]$
Now we equate the above equation equal to zero [ as it is given to be singular matrix]
We get $-2\lambda +8=0$
Hence $\lambda =4$
Hence the value of $\lambda =4$
Thus, Option (B) is the correct answer.
Note: Students must remember that the matrix should have same number of rows and columns to find the determinant of the matrix. This means we can find the determinant of the square matrix. We should have the practice of finding the determinant to solve the question in lesser time.
Complete Step- by- step Solution:
Given matrix is $\left[ \begin{matrix}
1 & 3 & \lambda +2 \\
2 & 4 & 8 \\
3 & 5 & 10 \\
\end{matrix} \right]$
As the matrix is of the order $3\times 3$, so it contains 3 rows and 3 columns.
Now we find the determinant of the given square matrix and then equate it to zero.
We find the determinant by using the first row.
The determinant is
$[1[4\times 10-5\times 8]-3[2\times 10-3\times 8]+[\lambda +2][2\times 5-3\times 4]]$
Simplifying the above equation, we get
$[1[40-40]-3[20-24]+[\lambda +2][10-12]]$
Evaluating further, we get
$[12-2\lambda -4]$
Now we equate the above equation equal to zero [ as it is given to be singular matrix]
We get $-2\lambda +8=0$
Hence $\lambda =4$
Hence the value of $\lambda =4$
Thus, Option (B) is the correct answer.
Note: Students must remember that the matrix should have same number of rows and columns to find the determinant of the matrix. This means we can find the determinant of the square matrix. We should have the practice of finding the determinant to solve the question in lesser time.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
