
If the length of the sides of a triangle be 7, \[4\sqrt 3 \], and \[\sqrt {13} \], then find the smallest angle.
A. \[{15^ \circ }\]
B. \[{30^ \circ }\]
C. \[{60^ \circ }\]
D. \[{45^ \circ }\]
Answer
217.8k+ views
Hint First we apply cosine law to find the angles of the triangle. Then compare the angles to find the smallest angle.
Formula used:
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution
Given that the length of the sides of a triangle are 7, \[4\sqrt 3 \], and \[\sqrt {13} \].
Assume that, a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \].
Now calculate angle A using the formula \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{7^2} = {\left( {4\sqrt 3 } \right)^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( {4\sqrt 3 } \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos A\]
\[ \Rightarrow 49 = 48 + 13 - 8\sqrt {39} \cos A\]
\[ \Rightarrow 48 + 13 - 49 = 8\sqrt {39} \cos A\]
\[ \Rightarrow 12 = 8\sqrt {39} \cos A\]
Divide both sides by \[8\sqrt {39} \]
\[ \Rightarrow \dfrac{{12}}{{8\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{3}{{2\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{2\sqrt {13} }} = \cos A\]
\[ \Rightarrow A \approx {76.102^ \circ }\]
Now calculate angle B using the formula \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {4\sqrt 3 } \right)^2} = {7^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( 7 \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos B\]
\[ \Rightarrow 48 = 49 + 13 - 14\sqrt {13} \cos B\]
\[ \Rightarrow 49 + 13 - 48 = 14\sqrt {13} \cos B\]
\[ \Rightarrow 14 = 14\sqrt {13} \cos B\]
Divide both sides by \[14\sqrt {13} \]
\[ \Rightarrow \dfrac{{14}}{{14\sqrt {13} }} = \cos B\]
Cancel 14 from both sides:
\[ \Rightarrow \dfrac{1}{{\sqrt {13} }} = \cos B\]
\[ \Rightarrow B \approx {73.898^ \circ }\]
Now calculate angle B using the formula \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {\sqrt {13} } \right)^2} = {\left( {4\sqrt 3 } \right)^2} + {7^2} - 2 \cdot 4\sqrt 3 \cdot 7 \cdot \cos C\]
\[ \Rightarrow 13 = 48 + 49 - 56\sqrt 3 \cos C\]
\[ \Rightarrow 48 + 49 - 13 = 56\sqrt 3 \cos C\]
\[ \Rightarrow 84 = 56\sqrt 3 \cos C\]
Divide both sides by \[56\sqrt 3 \]
\[ \Rightarrow \dfrac{{84}}{{56\sqrt 3 }} = \cos C\]
Divide denominator and numerator by 28
\[ \Rightarrow \dfrac{3}{{2\sqrt 3 }} = \cos C\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \cos C\]
\[ \Rightarrow C = {30^ \circ }\]
The angles of the triangle are \[{76.102^ \circ },{73.898^ \circ },{30^ \circ }\].
The smallest angle of the triangle is \[{30^ \circ }\].
Hence option B is the correct.
Note A triangle has three angles. So, we need to find all three angles of the triangle. Students often make mistakes to solve this question. They did not compute all angles of the triangle. But we need to find all three angles to find the smallest angle using this method. Either we can compute values of cosines of all three angles and then we can conclude that the largest cosine value will have smallest angle and then we can compute the value of angle.
Formula used:
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution
Given that the length of the sides of a triangle are 7, \[4\sqrt 3 \], and \[\sqrt {13} \].
Assume that, a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \].
Now calculate angle A using the formula \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{7^2} = {\left( {4\sqrt 3 } \right)^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( {4\sqrt 3 } \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos A\]
\[ \Rightarrow 49 = 48 + 13 - 8\sqrt {39} \cos A\]
\[ \Rightarrow 48 + 13 - 49 = 8\sqrt {39} \cos A\]
\[ \Rightarrow 12 = 8\sqrt {39} \cos A\]
Divide both sides by \[8\sqrt {39} \]
\[ \Rightarrow \dfrac{{12}}{{8\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{3}{{2\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{2\sqrt {13} }} = \cos A\]
\[ \Rightarrow A \approx {76.102^ \circ }\]
Now calculate angle B using the formula \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {4\sqrt 3 } \right)^2} = {7^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( 7 \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos B\]
\[ \Rightarrow 48 = 49 + 13 - 14\sqrt {13} \cos B\]
\[ \Rightarrow 49 + 13 - 48 = 14\sqrt {13} \cos B\]
\[ \Rightarrow 14 = 14\sqrt {13} \cos B\]
Divide both sides by \[14\sqrt {13} \]
\[ \Rightarrow \dfrac{{14}}{{14\sqrt {13} }} = \cos B\]
Cancel 14 from both sides:
\[ \Rightarrow \dfrac{1}{{\sqrt {13} }} = \cos B\]
\[ \Rightarrow B \approx {73.898^ \circ }\]
Now calculate angle B using the formula \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {\sqrt {13} } \right)^2} = {\left( {4\sqrt 3 } \right)^2} + {7^2} - 2 \cdot 4\sqrt 3 \cdot 7 \cdot \cos C\]
\[ \Rightarrow 13 = 48 + 49 - 56\sqrt 3 \cos C\]
\[ \Rightarrow 48 + 49 - 13 = 56\sqrt 3 \cos C\]
\[ \Rightarrow 84 = 56\sqrt 3 \cos C\]
Divide both sides by \[56\sqrt 3 \]
\[ \Rightarrow \dfrac{{84}}{{56\sqrt 3 }} = \cos C\]
Divide denominator and numerator by 28
\[ \Rightarrow \dfrac{3}{{2\sqrt 3 }} = \cos C\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \cos C\]
\[ \Rightarrow C = {30^ \circ }\]
The angles of the triangle are \[{76.102^ \circ },{73.898^ \circ },{30^ \circ }\].
The smallest angle of the triangle is \[{30^ \circ }\].
Hence option B is the correct.
Note A triangle has three angles. So, we need to find all three angles of the triangle. Students often make mistakes to solve this question. They did not compute all angles of the triangle. But we need to find all three angles to find the smallest angle using this method. Either we can compute values of cosines of all three angles and then we can conclude that the largest cosine value will have smallest angle and then we can compute the value of angle.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

