
If the length of the sides of a triangle be 7, \[4\sqrt 3 \], and \[\sqrt {13} \], then find the smallest angle.
A. \[{15^ \circ }\]
B. \[{30^ \circ }\]
C. \[{60^ \circ }\]
D. \[{45^ \circ }\]
Answer
233.1k+ views
Hint First we apply cosine law to find the angles of the triangle. Then compare the angles to find the smallest angle.
Formula used:
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution
Given that the length of the sides of a triangle are 7, \[4\sqrt 3 \], and \[\sqrt {13} \].
Assume that, a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \].
Now calculate angle A using the formula \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{7^2} = {\left( {4\sqrt 3 } \right)^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( {4\sqrt 3 } \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos A\]
\[ \Rightarrow 49 = 48 + 13 - 8\sqrt {39} \cos A\]
\[ \Rightarrow 48 + 13 - 49 = 8\sqrt {39} \cos A\]
\[ \Rightarrow 12 = 8\sqrt {39} \cos A\]
Divide both sides by \[8\sqrt {39} \]
\[ \Rightarrow \dfrac{{12}}{{8\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{3}{{2\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{2\sqrt {13} }} = \cos A\]
\[ \Rightarrow A \approx {76.102^ \circ }\]
Now calculate angle B using the formula \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {4\sqrt 3 } \right)^2} = {7^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( 7 \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos B\]
\[ \Rightarrow 48 = 49 + 13 - 14\sqrt {13} \cos B\]
\[ \Rightarrow 49 + 13 - 48 = 14\sqrt {13} \cos B\]
\[ \Rightarrow 14 = 14\sqrt {13} \cos B\]
Divide both sides by \[14\sqrt {13} \]
\[ \Rightarrow \dfrac{{14}}{{14\sqrt {13} }} = \cos B\]
Cancel 14 from both sides:
\[ \Rightarrow \dfrac{1}{{\sqrt {13} }} = \cos B\]
\[ \Rightarrow B \approx {73.898^ \circ }\]
Now calculate angle B using the formula \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {\sqrt {13} } \right)^2} = {\left( {4\sqrt 3 } \right)^2} + {7^2} - 2 \cdot 4\sqrt 3 \cdot 7 \cdot \cos C\]
\[ \Rightarrow 13 = 48 + 49 - 56\sqrt 3 \cos C\]
\[ \Rightarrow 48 + 49 - 13 = 56\sqrt 3 \cos C\]
\[ \Rightarrow 84 = 56\sqrt 3 \cos C\]
Divide both sides by \[56\sqrt 3 \]
\[ \Rightarrow \dfrac{{84}}{{56\sqrt 3 }} = \cos C\]
Divide denominator and numerator by 28
\[ \Rightarrow \dfrac{3}{{2\sqrt 3 }} = \cos C\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \cos C\]
\[ \Rightarrow C = {30^ \circ }\]
The angles of the triangle are \[{76.102^ \circ },{73.898^ \circ },{30^ \circ }\].
The smallest angle of the triangle is \[{30^ \circ }\].
Hence option B is the correct.
Note A triangle has three angles. So, we need to find all three angles of the triangle. Students often make mistakes to solve this question. They did not compute all angles of the triangle. But we need to find all three angles to find the smallest angle using this method. Either we can compute values of cosines of all three angles and then we can conclude that the largest cosine value will have smallest angle and then we can compute the value of angle.
Formula used:
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution
Given that the length of the sides of a triangle are 7, \[4\sqrt 3 \], and \[\sqrt {13} \].
Assume that, a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \].
Now calculate angle A using the formula \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{7^2} = {\left( {4\sqrt 3 } \right)^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( {4\sqrt 3 } \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos A\]
\[ \Rightarrow 49 = 48 + 13 - 8\sqrt {39} \cos A\]
\[ \Rightarrow 48 + 13 - 49 = 8\sqrt {39} \cos A\]
\[ \Rightarrow 12 = 8\sqrt {39} \cos A\]
Divide both sides by \[8\sqrt {39} \]
\[ \Rightarrow \dfrac{{12}}{{8\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{3}{{2\sqrt {39} }} = \cos A\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{2\sqrt {13} }} = \cos A\]
\[ \Rightarrow A \approx {76.102^ \circ }\]
Now calculate angle B using the formula \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {4\sqrt 3 } \right)^2} = {7^2} + {\left( {\sqrt {13} } \right)^2} - 2 \cdot \left( 7 \right) \cdot \left( {\sqrt {13} } \right) \cdot \cos B\]
\[ \Rightarrow 48 = 49 + 13 - 14\sqrt {13} \cos B\]
\[ \Rightarrow 49 + 13 - 48 = 14\sqrt {13} \cos B\]
\[ \Rightarrow 14 = 14\sqrt {13} \cos B\]
Divide both sides by \[14\sqrt {13} \]
\[ \Rightarrow \dfrac{{14}}{{14\sqrt {13} }} = \cos B\]
Cancel 14 from both sides:
\[ \Rightarrow \dfrac{1}{{\sqrt {13} }} = \cos B\]
\[ \Rightarrow B \approx {73.898^ \circ }\]
Now calculate angle B using the formula \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
Substitute a = 7, b = \[4\sqrt 3 \], and c =\[\sqrt {13} \]:
\[{\left( {\sqrt {13} } \right)^2} = {\left( {4\sqrt 3 } \right)^2} + {7^2} - 2 \cdot 4\sqrt 3 \cdot 7 \cdot \cos C\]
\[ \Rightarrow 13 = 48 + 49 - 56\sqrt 3 \cos C\]
\[ \Rightarrow 48 + 49 - 13 = 56\sqrt 3 \cos C\]
\[ \Rightarrow 84 = 56\sqrt 3 \cos C\]
Divide both sides by \[56\sqrt 3 \]
\[ \Rightarrow \dfrac{{84}}{{56\sqrt 3 }} = \cos C\]
Divide denominator and numerator by 28
\[ \Rightarrow \dfrac{3}{{2\sqrt 3 }} = \cos C\]
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} = \cos C\]
\[ \Rightarrow C = {30^ \circ }\]
The angles of the triangle are \[{76.102^ \circ },{73.898^ \circ },{30^ \circ }\].
The smallest angle of the triangle is \[{30^ \circ }\].
Hence option B is the correct.
Note A triangle has three angles. So, we need to find all three angles of the triangle. Students often make mistakes to solve this question. They did not compute all angles of the triangle. But we need to find all three angles to find the smallest angle using this method. Either we can compute values of cosines of all three angles and then we can conclude that the largest cosine value will have smallest angle and then we can compute the value of angle.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

