
If the length of rod A is $3.25 \pm 0.01cm$ and that of B is $4.19 \pm 0.01cm$ then how much rod B is longer than rod A?
Answer
219.6k+ views
Hint: We know that error is the difference between the measured value and the true value. It is an error while we take a measurement with a measuring instrument. It is unidirectional. Here apply the combination of errors in addition. Using this find how much rod B is longer than rod A.
Complete step by step answer:
Errors are categorized as two types: they are systematic error and random error.
Error can occur in the positive direction or negative direction. Errors may be because of either controllable or uncontrollable reasons.
By selecting an instrument with better resolution can reduce the error in the system. Also, we can say the difference between the measured value and the true value.
It is an error while we take a measurement with a measuring instrument.
The sum of absolute errors in the quantities is the final result when two quantities are added or subtracted.
We have to know that all the measurements will have both systematic and random errors.
Here the length of rod A is $3.25 \pm 0.01cm$ and b is $4.19 \pm 0.01cm$
From the above statement it is clear that rod B is longer than that of rod A.
Then we apply rod B is longer than Rod A by
$\Rightarrow m = 4.19 \pm 0.01 - \left( {3.25 \pm 0.01} \right)$
Hence, we can write
$\Rightarrow m = \left( {4.19 - 3.25} \right) \pm \left( {0.01 + 0.01} \right)$
On simplification we get
$\Rightarrow m = 0.94 \pm 0.02cm$
Hence we get the required answer.
Note: While calculating errors in multiplication and division, the maximum relative error is the sum of relative errors of quantities that are multiplied or divided.
We have to know that all the measurements will have both systematic and random errors.
By selecting an instrument with better resolution can reduce the error in the system.
Complete step by step answer:
Errors are categorized as two types: they are systematic error and random error.
Error can occur in the positive direction or negative direction. Errors may be because of either controllable or uncontrollable reasons.
By selecting an instrument with better resolution can reduce the error in the system. Also, we can say the difference between the measured value and the true value.
It is an error while we take a measurement with a measuring instrument.
The sum of absolute errors in the quantities is the final result when two quantities are added or subtracted.
We have to know that all the measurements will have both systematic and random errors.
Here the length of rod A is $3.25 \pm 0.01cm$ and b is $4.19 \pm 0.01cm$
From the above statement it is clear that rod B is longer than that of rod A.
Then we apply rod B is longer than Rod A by
$\Rightarrow m = 4.19 \pm 0.01 - \left( {3.25 \pm 0.01} \right)$
Hence, we can write
$\Rightarrow m = \left( {4.19 - 3.25} \right) \pm \left( {0.01 + 0.01} \right)$
On simplification we get
$\Rightarrow m = 0.94 \pm 0.02cm$
Hence we get the required answer.
Note: While calculating errors in multiplication and division, the maximum relative error is the sum of relative errors of quantities that are multiplied or divided.
We have to know that all the measurements will have both systematic and random errors.
By selecting an instrument with better resolution can reduce the error in the system.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

