
If the given function\[f\left( x \right)\] is continuous at \[x = 0\] then find the value of \[a + 2b\].
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{\sin \left( {a + 2} \right)x + \sin x}}{x},x < 0} \\
{b{\text{ ,}}x = 0} \\
{\dfrac{{{{\left( {x + 3{x^2}} \right)}^{\dfrac{1}{3}}} - {x^{\dfrac{1}{3}}}}}{{{x^{\dfrac{4}{3}}}}}{\text{ ,x > 0}}}
\end{array}} \right.\]
A. \[ - 2\]
B. \[1\]
C. \[0\]
D. \[ - 1\]
Answer
162.9k+ views
Hint: In this question, for determining the value of \[b\], we have to equate the left-hand limit of a function to the right-hand limit of a function. After getting, the value of \[b\], we can easily calculate the value of \[b\] and also the value of \[a + 2b\].
Formula Used: If \[f\left( x \right)\] is continuous at \[x = 0\] then \[\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\]
Also, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\] and \[\cos \left( 0 \right) = 1\]
Complete step by step answer:
We know that \[f\left( x \right)\] is continuous at \[x = 0\].
\[\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\]
Thus, we can say that
\[\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = b = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\]
\[b = \mathop {\lim }\limits_{h \to 0} f\left( {0 + h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {h + 3{h^2}} \right)}^{\dfrac{1}{3}}} - {h^{\dfrac{1}{3}}}}}{{{h^{\dfrac{4}{3}}}}}\]
\[b = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^{\dfrac{1}{3}}}\left[ {{{\left( {1 + 3h} \right)}^{\dfrac{1}{3}}} - 1} \right]}}{{{h^{\dfrac{4}{3}}}}}\]
\[b = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left[ {{{\left( {1 + 3h} \right)}^{\dfrac{1}{3}}} - 1} \right]}}{h}\]
By simplifying, we get
\[b = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{3}\left[ {{{\left( {1 + 3h} \right)}^{\dfrac{{ - 2}}{3}}} \times 3} \right]\]
\[b = \dfrac{1}{3}\left[ {{{\left( {1 + 0} \right)}^{\dfrac{{ - 2}}{3}}} \times 3} \right]\]
\[b = \dfrac{1}{3}\left[ 3 \right]\]
\[b = 1\]
Now we can have
\[
\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {a + 2} \right)\left( x \right) + \sin \left( x \right)}}{x} \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {a + 2} \right)\left( x \right) + \sin \left( x \right)}}{x} = 1 \\
\]
Here, we will use the trigonometric identity such as \[\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b\]
Thus, we get \[\sin \left( {ax + 2x} \right) = \sin \left( {ax} \right)\cos \left( {2x} \right) + \cos \left( {ax} \right)\sin \left( {2x} \right)\]
By simplifying, we get
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin \left( {ax} \right)\cos \left( {2x} \right) + \cos \left( {ax} \right)\sin \left( {2x} \right) + \sin \left( x \right)}}{x}} \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin \left( {ax} \right)\cos \left( {2x} \right)}}{x} + \dfrac{{\cos \left( {ax} \right)\sin \left( {2x} \right)}}{x} + \dfrac{{\sin \left( x \right)}}{x}} \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{a\sin \left( {ax} \right)\cos \left( {2x} \right)}}{{ax}} + \dfrac{{2\cos \left( {ax} \right)\sin \left( {2x} \right)}}{{2x}} + \dfrac{{\sin \left( x \right)}}{x}} \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{a\sin \left( {ax} \right)\cos \left( {2x} \right)}}{{ax}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{2\cos \left( {ax} \right)\sin \left( {2x} \right)}}{{2x}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{x} = 1 \\
\]
But we know that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
So, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} a\dfrac{{\sin \left( {ax} \right)}}{{ax}}\mathop {\lim }\limits_{x \to 0} \cos \left( {2x} \right) + \mathop {\lim }\limits_{x \to 0} 2\dfrac{{\sin \left( {2x} \right)}}{{2x}}\mathop {\lim }\limits_{x \to 0} \cos \left( {ax} \right) + \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{x} = 1\]
\[
\Rightarrow a\left( 1 \right)\cos \left( 0 \right) + 2\left( 1 \right)\cos \left( 0 \right) + \left( 1 \right) = 1 \\
\Rightarrow a\left( 1 \right)\left( 1 \right) + 2\left( 1 \right)\left( 1 \right) + \left( 1 \right) = 1 \\
\]
By simplifying further, we get
\[
\Rightarrow a + 2 + 1 = 1 \\
\Rightarrow a + 3 = 1 \\
\Rightarrow a = 1 - 3 \\
\Rightarrow a = - 2 \\
\]
Thus, we get
\[
a + 2b = - 2 + 2\left( 1 \right) \\
\Rightarrow a + 2b = 0 \\
\]
The value of \[a + 2b\]is \[0\].
Therefore, the option (C) is correct.
Additional Information: A function \[f\left( x \right)\]is continuous at a point \[x = b\], in its domain if and only if the below three conditions are fulfilled:
1) \[f\left( b \right)\]exists (That means the value of \[f\left( a \right)\]is finite)
2) \[\mathop {\lim }\limits_{x \to b} f\left( x \right)\]exists (That means the right-hand limit is equal to the left-hand limit, and both are finite in this case.)
3) \[\mathop {\lim }\limits_{x \to b} f\left( x \right) = f\left( b \right)\]
If any of the above three continuous-function criteria fails, the function is seen to be discontinuous at that moment. A limit is a value at which a function approaches the output for the given input values. This is the fundamental key point of calculus and analysis.
Note: Many students make mistakes in solving the limit of a function and further part. This is the only way, through which we can solve the example in the simplest way. In this question, the key point is the function is continuous which means the right-hand limit is equal to the left-hand limit of a given function.
Formula Used: If \[f\left( x \right)\] is continuous at \[x = 0\] then \[\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\]
Also, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\] and \[\cos \left( 0 \right) = 1\]
Complete step by step answer:
We know that \[f\left( x \right)\] is continuous at \[x = 0\].
\[\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\]
Thus, we can say that
\[\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = b = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\]
\[b = \mathop {\lim }\limits_{h \to 0} f\left( {0 + h} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {h + 3{h^2}} \right)}^{\dfrac{1}{3}}} - {h^{\dfrac{1}{3}}}}}{{{h^{\dfrac{4}{3}}}}}\]
\[b = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^{\dfrac{1}{3}}}\left[ {{{\left( {1 + 3h} \right)}^{\dfrac{1}{3}}} - 1} \right]}}{{{h^{\dfrac{4}{3}}}}}\]
\[b = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left[ {{{\left( {1 + 3h} \right)}^{\dfrac{1}{3}}} - 1} \right]}}{h}\]
By simplifying, we get
\[b = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{3}\left[ {{{\left( {1 + 3h} \right)}^{\dfrac{{ - 2}}{3}}} \times 3} \right]\]
\[b = \dfrac{1}{3}\left[ {{{\left( {1 + 0} \right)}^{\dfrac{{ - 2}}{3}}} \times 3} \right]\]
\[b = \dfrac{1}{3}\left[ 3 \right]\]
\[b = 1\]
Now we can have
\[
\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {a + 2} \right)\left( x \right) + \sin \left( x \right)}}{x} \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( {a + 2} \right)\left( x \right) + \sin \left( x \right)}}{x} = 1 \\
\]
Here, we will use the trigonometric identity such as \[\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b\]
Thus, we get \[\sin \left( {ax + 2x} \right) = \sin \left( {ax} \right)\cos \left( {2x} \right) + \cos \left( {ax} \right)\sin \left( {2x} \right)\]
By simplifying, we get
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin \left( {ax} \right)\cos \left( {2x} \right) + \cos \left( {ax} \right)\sin \left( {2x} \right) + \sin \left( x \right)}}{x}} \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin \left( {ax} \right)\cos \left( {2x} \right)}}{x} + \dfrac{{\cos \left( {ax} \right)\sin \left( {2x} \right)}}{x} + \dfrac{{\sin \left( x \right)}}{x}} \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{a\sin \left( {ax} \right)\cos \left( {2x} \right)}}{{ax}} + \dfrac{{2\cos \left( {ax} \right)\sin \left( {2x} \right)}}{{2x}} + \dfrac{{\sin \left( x \right)}}{x}} \right) = 1 \\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{a\sin \left( {ax} \right)\cos \left( {2x} \right)}}{{ax}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{2\cos \left( {ax} \right)\sin \left( {2x} \right)}}{{2x}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{x} = 1 \\
\]
But we know that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
So, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} a\dfrac{{\sin \left( {ax} \right)}}{{ax}}\mathop {\lim }\limits_{x \to 0} \cos \left( {2x} \right) + \mathop {\lim }\limits_{x \to 0} 2\dfrac{{\sin \left( {2x} \right)}}{{2x}}\mathop {\lim }\limits_{x \to 0} \cos \left( {ax} \right) + \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{x} = 1\]
\[
\Rightarrow a\left( 1 \right)\cos \left( 0 \right) + 2\left( 1 \right)\cos \left( 0 \right) + \left( 1 \right) = 1 \\
\Rightarrow a\left( 1 \right)\left( 1 \right) + 2\left( 1 \right)\left( 1 \right) + \left( 1 \right) = 1 \\
\]
By simplifying further, we get
\[
\Rightarrow a + 2 + 1 = 1 \\
\Rightarrow a + 3 = 1 \\
\Rightarrow a = 1 - 3 \\
\Rightarrow a = - 2 \\
\]
Thus, we get
\[
a + 2b = - 2 + 2\left( 1 \right) \\
\Rightarrow a + 2b = 0 \\
\]
The value of \[a + 2b\]is \[0\].
Therefore, the option (C) is correct.
Additional Information: A function \[f\left( x \right)\]is continuous at a point \[x = b\], in its domain if and only if the below three conditions are fulfilled:
1) \[f\left( b \right)\]exists (That means the value of \[f\left( a \right)\]is finite)
2) \[\mathop {\lim }\limits_{x \to b} f\left( x \right)\]exists (That means the right-hand limit is equal to the left-hand limit, and both are finite in this case.)
3) \[\mathop {\lim }\limits_{x \to b} f\left( x \right) = f\left( b \right)\]
If any of the above three continuous-function criteria fails, the function is seen to be discontinuous at that moment. A limit is a value at which a function approaches the output for the given input values. This is the fundamental key point of calculus and analysis.
Note: Many students make mistakes in solving the limit of a function and further part. This is the only way, through which we can solve the example in the simplest way. In this question, the key point is the function is continuous which means the right-hand limit is equal to the left-hand limit of a given function.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
