
If the frequency of ${K_\alpha }$ X rays emitted from the element with atomic number 31 is v, then the frequency of ${K_\alpha }$ X-rays emitted from the element with atomic number 51 would be
(A) $\dfrac{5}{3}v$
(B) $\dfrac{{54}}{{31}}v$
(C) $\dfrac{{25}}{9}v$
(D) $\dfrac{9}{{25}}v$
Answer
232.8k+ views
Hint We write down the known formula of Moseley’s law $\sqrt \nu \propto \left( {z - 1} \right)$ . Then we will square both the sides and will take the ratio. The constant proportionality term will get cancelled. We will easily get the unknown value of frequency.
Complete step by step solution
We know that the statement of Moseley’s law that the square root of the frequency of a peak of the characteristics X- ray spectrum of any element is directly proportional to the atomic number of that element.
Here let the frequency of the ${K_\alpha }$ line of any element having atomic number Z be ${\nu _1}$ . Then according to Moseley’s law.
Given that ${\nu _1} = \nu $
When frequency is v then atomic number be ${Z_1} = 31$
Now when atomic number ${Z_2} = \,51$ then let frequency of ${K_\alpha }$ be ${\nu _2}$
$\sqrt \nu \propto \left( {z - 1} \right)$
So squaring both sides and taking ratio we can write
$ \Rightarrow \dfrac{{{\nu _2}}}{{{\nu _1}}} = {\left( {\dfrac{{{Z_2} - 1}}{{{Z_1} - 1}}} \right)^2}$
So, we have to calculate ${\nu _2}$
$ \Rightarrow {\nu _2} = {\left( {\dfrac{{51 - 1}}{{31 - 1}}} \right)^2}{\nu _1} = \,\,\dfrac{{25}}{9}\nu $
Thus, the required solution is $\dfrac{{25}}{9}\nu $ (option- “C”)
Additional Information
Moseley's law can be explained from Bohr’s theory. From Bohr’s theory we can write that the equation for n-th energy state of the atom is ${E_n} = - \dfrac{{13.6{{(z - 1)}^2}}}{{{n^2}}}$ (in eV). Due to the ${K_\alpha }$ of spectrum is produced due to the transition of an electron from \[L\left( {n = 2} \right)\] orbit to \[K\left( {n = 1} \right)\] orbit. Due to transition if the frequency of the emitted X-rays be v
Then $h\nu = \,{(E)_{n = 2}} - {(E)_{n = 1}} = {E_2} - {E_1}$
$ \Rightarrow h\nu = \, - \dfrac{{13.6{{(z - 1)}^2}}}{{{2^2}}} + \dfrac{{13.6{{(z - 1)}^2}}}{{{1^2}}}\,(in\,eV)$
$\therefore h\nu = 10.2{(z - 1)^2}$
$\sqrt \nu \propto \left( {z - 1} \right)$
Note
Solving this one may have to keep in mind that the square root of the frequency is of a peak of the characteristics X- ray spectrum of any element is directly proportional to the atomic number of that element. So, option “D” cannot be correct. If one quantity increases other ones also increases. Here we are not going to use proportionality constant to calculate the unknown value of frequency. When we take a ratio it automatically gets cancelled. We have to square in the last step so option “D” also cannot be the right one. Option “C” is the correct one.
Complete step by step solution
We know that the statement of Moseley’s law that the square root of the frequency of a peak of the characteristics X- ray spectrum of any element is directly proportional to the atomic number of that element.
Here let the frequency of the ${K_\alpha }$ line of any element having atomic number Z be ${\nu _1}$ . Then according to Moseley’s law.
Given that ${\nu _1} = \nu $
When frequency is v then atomic number be ${Z_1} = 31$
Now when atomic number ${Z_2} = \,51$ then let frequency of ${K_\alpha }$ be ${\nu _2}$
$\sqrt \nu \propto \left( {z - 1} \right)$
So squaring both sides and taking ratio we can write
$ \Rightarrow \dfrac{{{\nu _2}}}{{{\nu _1}}} = {\left( {\dfrac{{{Z_2} - 1}}{{{Z_1} - 1}}} \right)^2}$
So, we have to calculate ${\nu _2}$
$ \Rightarrow {\nu _2} = {\left( {\dfrac{{51 - 1}}{{31 - 1}}} \right)^2}{\nu _1} = \,\,\dfrac{{25}}{9}\nu $
Thus, the required solution is $\dfrac{{25}}{9}\nu $ (option- “C”)
Additional Information
Moseley's law can be explained from Bohr’s theory. From Bohr’s theory we can write that the equation for n-th energy state of the atom is ${E_n} = - \dfrac{{13.6{{(z - 1)}^2}}}{{{n^2}}}$ (in eV). Due to the ${K_\alpha }$ of spectrum is produced due to the transition of an electron from \[L\left( {n = 2} \right)\] orbit to \[K\left( {n = 1} \right)\] orbit. Due to transition if the frequency of the emitted X-rays be v
Then $h\nu = \,{(E)_{n = 2}} - {(E)_{n = 1}} = {E_2} - {E_1}$
$ \Rightarrow h\nu = \, - \dfrac{{13.6{{(z - 1)}^2}}}{{{2^2}}} + \dfrac{{13.6{{(z - 1)}^2}}}{{{1^2}}}\,(in\,eV)$
$\therefore h\nu = 10.2{(z - 1)^2}$
$\sqrt \nu \propto \left( {z - 1} \right)$
Note
Solving this one may have to keep in mind that the square root of the frequency is of a peak of the characteristics X- ray spectrum of any element is directly proportional to the atomic number of that element. So, option “D” cannot be correct. If one quantity increases other ones also increases. Here we are not going to use proportionality constant to calculate the unknown value of frequency. When we take a ratio it automatically gets cancelled. We have to square in the last step so option “D” also cannot be the right one. Option “C” is the correct one.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

CBSE Class 12 Physics Set 2 (55/2/2) 2025 Question Paper & Solutions

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Units and Measurements Mock Test for JEE Main 2025-26 Preparation

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

