
If the eccentricities of the hyperbolas \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] be \[e\] and \[{e_1}\]. Then what is the value of \[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}}\]?
A. 1
B. 2
C. 3
D. None of these
Answer
163.2k+ views
Hint: Here, the equations of the two hyperbolas are given. First, apply the formula of the eccentricity of the hyperbola and calculate the eccentricities of both hyperbolas. Then, substitute the values in the given expression and solve it to get the required answer.
Formula used: The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
The eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
Complete step by step solution: Given:
The equations of the hyperbolas are \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\].
\[e\] and \[{e_1}\] are the eccentricities of both hyperbolas respectively.
Let’s calculate the eccentricities of the both hyperbolas.
From the standard formulas of the eccentricity of the hyperbola, we get
The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is:
\[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
\[ \Rightarrow e = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{a^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e^2} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}\] \[.....\left( 1 \right)\]
Also, the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is:
\[{e_1} = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
\[ \Rightarrow {e_1} = \sqrt {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e_1}^2 = \dfrac{{{a^2} + {b^2}}}{{{b^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the required equation.
\[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}} + \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{b^2}}}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2}}}{{{a^2} + {b^2}}} + \dfrac{{{b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = 1\]
Thus, Option (B) is correct.
Note: Sometimes students get confused and write the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] as \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]. Because of that, they get the wrong answer.
Formula used: The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
The eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
Complete step by step solution: Given:
The equations of the hyperbolas are \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\].
\[e\] and \[{e_1}\] are the eccentricities of both hyperbolas respectively.
Let’s calculate the eccentricities of the both hyperbolas.
From the standard formulas of the eccentricity of the hyperbola, we get
The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is:
\[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
\[ \Rightarrow e = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{a^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e^2} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}\] \[.....\left( 1 \right)\]
Also, the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is:
\[{e_1} = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
\[ \Rightarrow {e_1} = \sqrt {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e_1}^2 = \dfrac{{{a^2} + {b^2}}}{{{b^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the required equation.
\[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}} + \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{b^2}}}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2}}}{{{a^2} + {b^2}}} + \dfrac{{{b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = 1\]
Thus, Option (B) is correct.
Note: Sometimes students get confused and write the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] as \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]. Because of that, they get the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
