
If the eccentricities of the hyperbolas \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] be \[e\] and \[{e_1}\]. Then what is the value of \[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}}\]?
A. 1
B. 2
C. 3
D. None of these
Answer
232.8k+ views
Hint: Here, the equations of the two hyperbolas are given. First, apply the formula of the eccentricity of the hyperbola and calculate the eccentricities of both hyperbolas. Then, substitute the values in the given expression and solve it to get the required answer.
Formula used: The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
The eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
Complete step by step solution: Given:
The equations of the hyperbolas are \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\].
\[e\] and \[{e_1}\] are the eccentricities of both hyperbolas respectively.
Let’s calculate the eccentricities of the both hyperbolas.
From the standard formulas of the eccentricity of the hyperbola, we get
The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is:
\[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
\[ \Rightarrow e = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{a^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e^2} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}\] \[.....\left( 1 \right)\]
Also, the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is:
\[{e_1} = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
\[ \Rightarrow {e_1} = \sqrt {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e_1}^2 = \dfrac{{{a^2} + {b^2}}}{{{b^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the required equation.
\[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}} + \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{b^2}}}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2}}}{{{a^2} + {b^2}}} + \dfrac{{{b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = 1\]
Thus, Option (B) is correct.
Note: Sometimes students get confused and write the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] as \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]. Because of that, they get the wrong answer.
Formula used: The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
The eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
Complete step by step solution: Given:
The equations of the hyperbolas are \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\].
\[e\] and \[{e_1}\] are the eccentricities of both hyperbolas respectively.
Let’s calculate the eccentricities of the both hyperbolas.
From the standard formulas of the eccentricity of the hyperbola, we get
The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is:
\[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
\[ \Rightarrow e = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{a^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e^2} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}\] \[.....\left( 1 \right)\]
Also, the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is:
\[{e_1} = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
\[ \Rightarrow {e_1} = \sqrt {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e_1}^2 = \dfrac{{{a^2} + {b^2}}}{{{b^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the required equation.
\[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}} + \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{b^2}}}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2}}}{{{a^2} + {b^2}}} + \dfrac{{{b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = 1\]
Thus, Option (B) is correct.
Note: Sometimes students get confused and write the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] as \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]. Because of that, they get the wrong answer.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

