
If the eccentricities of the hyperbolas \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] be \[e\] and \[{e_1}\]. Then what is the value of \[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}}\]?
A. 1
B. 2
C. 3
D. None of these
Answer
217.5k+ views
Hint: Here, the equations of the two hyperbolas are given. First, apply the formula of the eccentricity of the hyperbola and calculate the eccentricities of both hyperbolas. Then, substitute the values in the given expression and solve it to get the required answer.
Formula used: The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
The eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
Complete step by step solution: Given:
The equations of the hyperbolas are \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\].
\[e\] and \[{e_1}\] are the eccentricities of both hyperbolas respectively.
Let’s calculate the eccentricities of the both hyperbolas.
From the standard formulas of the eccentricity of the hyperbola, we get
The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is:
\[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
\[ \Rightarrow e = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{a^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e^2} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}\] \[.....\left( 1 \right)\]
Also, the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is:
\[{e_1} = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
\[ \Rightarrow {e_1} = \sqrt {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e_1}^2 = \dfrac{{{a^2} + {b^2}}}{{{b^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the required equation.
\[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}} + \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{b^2}}}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2}}}{{{a^2} + {b^2}}} + \dfrac{{{b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = 1\]
Thus, Option (B) is correct.
Note: Sometimes students get confused and write the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] as \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]. Because of that, they get the wrong answer.
Formula used: The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
The eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is: \[e = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
Complete step by step solution: Given:
The equations of the hyperbolas are \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] and \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\].
\[e\] and \[{e_1}\] are the eccentricities of both hyperbolas respectively.
Let’s calculate the eccentricities of the both hyperbolas.
From the standard formulas of the eccentricity of the hyperbola, we get
The eccentricity of the hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] is:
\[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]
\[ \Rightarrow e = \sqrt {\dfrac{{{a^2} + {b^2}}}{{{a^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e^2} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}\] \[.....\left( 1 \right)\]
Also, the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] is:
\[{e_1} = \sqrt {1 + \dfrac{{{a^2}}}{{{b^2}}}} \]
\[ \Rightarrow {e_1} = \sqrt {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \]
Take squares of both sides.
\[ \Rightarrow {e_1}^2 = \dfrac{{{a^2} + {b^2}}}{{{b^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the required equation.
\[\dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}} + \dfrac{1}{{\dfrac{{{a^2} + {b^2}}}{{{b^2}}}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2}}}{{{a^2} + {b^2}}} + \dfrac{{{b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {b^2}}}\]
\[ \Rightarrow \dfrac{1}{{{e^2}}} + \dfrac{1}{{{e_1}^2}} = 1\]
Thus, Option (B) is correct.
Note: Sometimes students get confused and write the eccentricity of the hyperbola \[\dfrac{{{y^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{a^2}}} = 1\] as \[e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} \]. Because of that, they get the wrong answer.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

