
If the distance \[{\bf{s}}\] covered by a particle in time \[t\] is proportional to the cube root of its velocity, then the acceleration is:
a constant
1. proportional to \[{{\bf{s}}^{\bf{3}}}\]
2. proportional to \[{\bf{1}}/{{\bf{s}}^{\bf{3}}}\]
3. proportional to \[{{\bf{s}}^{\bf{5}}}\]
4. proportional to \[{\bf{1}}/{{\bf{s}}^{\bf{5}}}\]
Answer
163.5k+ views
Hint: In this question we have to correlate the terms given such that the distance is proportional to the cube root of the velocity in this way. And then we can use differentiation with respect to time to solve this question.
Complete answer:
As asked in the question that we have to calculate acceleration according to given data,
Distance \[{\bf{s}}\] of the particle is proportional to the cube root of its velocity such that
\[s{\rm{ }}\alpha {\rm{ }}{v^{\dfrac{1}{3}}}\]
Now, writing it in simplest form we have
\[v{\rm{ }}\alpha {\rm{ }}{{\rm{s}}^3}\, —-(1)\]
But, we can write velocity as the function of distance and time such that
\[v = \dfrac{{ds}}{{dt}}\], put this vale in equation\[(1)\], we get
\[ \Rightarrow \dfrac{{ds}}{{dt}}\alpha {{\rm{s}}^3}\]
\[ \Rightarrow v = \dfrac{{ds}}{{dt}} = p{{\rm{s}}^3} —-(2) \] \[p\] is the proportionality constant
While acceleration is given by,
\[a = \dfrac{{dv}}{{dt}} = \dfrac{d}{{dt}}\left( {p{s^3}} \right)\] , from \[(2)\]
\[ \Rightarrow a = 3p{s^2}\left( {\dfrac{{ds}}{{dt}}} \right)\] … on differentiating … from \[(2)\]
\[ \Rightarrow a = 3{p^2}{s^5}\]
Thus, the answer is the acceleration is directly proportional to the fifth root of \[{\bf{s}}\] i.e., Option 4.
Note: It is very easy to solve this type of question because here are the very basic concepts used from mathematics as well proportionality we are learning from early standards and are very much aware of the concepts. Along with this we must know differentiation and basic concept of distance, velocity and acceleration.
Complete answer:
As asked in the question that we have to calculate acceleration according to given data,
Distance \[{\bf{s}}\] of the particle is proportional to the cube root of its velocity such that
\[s{\rm{ }}\alpha {\rm{ }}{v^{\dfrac{1}{3}}}\]
Now, writing it in simplest form we have
\[v{\rm{ }}\alpha {\rm{ }}{{\rm{s}}^3}\, —-(1)\]
But, we can write velocity as the function of distance and time such that
\[v = \dfrac{{ds}}{{dt}}\], put this vale in equation\[(1)\], we get
\[ \Rightarrow \dfrac{{ds}}{{dt}}\alpha {{\rm{s}}^3}\]
\[ \Rightarrow v = \dfrac{{ds}}{{dt}} = p{{\rm{s}}^3} —-(2) \] \[p\] is the proportionality constant
While acceleration is given by,
\[a = \dfrac{{dv}}{{dt}} = \dfrac{d}{{dt}}\left( {p{s^3}} \right)\] , from \[(2)\]
\[ \Rightarrow a = 3p{s^2}\left( {\dfrac{{ds}}{{dt}}} \right)\] … on differentiating … from \[(2)\]
\[ \Rightarrow a = 3{p^2}{s^5}\]
Thus, the answer is the acceleration is directly proportional to the fifth root of \[{\bf{s}}\] i.e., Option 4.
Note: It is very easy to solve this type of question because here are the very basic concepts used from mathematics as well proportionality we are learning from early standards and are very much aware of the concepts. Along with this we must know differentiation and basic concept of distance, velocity and acceleration.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
