
If the distance \[{\bf{s}}\] covered by a particle in time \[t\] is proportional to the cube root of its velocity, then the acceleration is:
a constant
1. proportional to \[{{\bf{s}}^{\bf{3}}}\]
2. proportional to \[{\bf{1}}/{{\bf{s}}^{\bf{3}}}\]
3. proportional to \[{{\bf{s}}^{\bf{5}}}\]
4. proportional to \[{\bf{1}}/{{\bf{s}}^{\bf{5}}}\]
Answer
164.1k+ views
Hint: In this question we have to correlate the terms given such that the distance is proportional to the cube root of the velocity in this way. And then we can use differentiation with respect to time to solve this question.
Complete answer:
As asked in the question that we have to calculate acceleration according to given data,
Distance \[{\bf{s}}\] of the particle is proportional to the cube root of its velocity such that
\[s{\rm{ }}\alpha {\rm{ }}{v^{\dfrac{1}{3}}}\]
Now, writing it in simplest form we have
\[v{\rm{ }}\alpha {\rm{ }}{{\rm{s}}^3}\, —-(1)\]
But, we can write velocity as the function of distance and time such that
\[v = \dfrac{{ds}}{{dt}}\], put this vale in equation\[(1)\], we get
\[ \Rightarrow \dfrac{{ds}}{{dt}}\alpha {{\rm{s}}^3}\]
\[ \Rightarrow v = \dfrac{{ds}}{{dt}} = p{{\rm{s}}^3} —-(2) \] \[p\] is the proportionality constant
While acceleration is given by,
\[a = \dfrac{{dv}}{{dt}} = \dfrac{d}{{dt}}\left( {p{s^3}} \right)\] , from \[(2)\]
\[ \Rightarrow a = 3p{s^2}\left( {\dfrac{{ds}}{{dt}}} \right)\] … on differentiating … from \[(2)\]
\[ \Rightarrow a = 3{p^2}{s^5}\]
Thus, the answer is the acceleration is directly proportional to the fifth root of \[{\bf{s}}\] i.e., Option 4.
Note: It is very easy to solve this type of question because here are the very basic concepts used from mathematics as well proportionality we are learning from early standards and are very much aware of the concepts. Along with this we must know differentiation and basic concept of distance, velocity and acceleration.
Complete answer:
As asked in the question that we have to calculate acceleration according to given data,
Distance \[{\bf{s}}\] of the particle is proportional to the cube root of its velocity such that
\[s{\rm{ }}\alpha {\rm{ }}{v^{\dfrac{1}{3}}}\]
Now, writing it in simplest form we have
\[v{\rm{ }}\alpha {\rm{ }}{{\rm{s}}^3}\, —-(1)\]
But, we can write velocity as the function of distance and time such that
\[v = \dfrac{{ds}}{{dt}}\], put this vale in equation\[(1)\], we get
\[ \Rightarrow \dfrac{{ds}}{{dt}}\alpha {{\rm{s}}^3}\]
\[ \Rightarrow v = \dfrac{{ds}}{{dt}} = p{{\rm{s}}^3} —-(2) \] \[p\] is the proportionality constant
While acceleration is given by,
\[a = \dfrac{{dv}}{{dt}} = \dfrac{d}{{dt}}\left( {p{s^3}} \right)\] , from \[(2)\]
\[ \Rightarrow a = 3p{s^2}\left( {\dfrac{{ds}}{{dt}}} \right)\] … on differentiating … from \[(2)\]
\[ \Rightarrow a = 3{p^2}{s^5}\]
Thus, the answer is the acceleration is directly proportional to the fifth root of \[{\bf{s}}\] i.e., Option 4.
Note: It is very easy to solve this type of question because here are the very basic concepts used from mathematics as well proportionality we are learning from early standards and are very much aware of the concepts. Along with this we must know differentiation and basic concept of distance, velocity and acceleration.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
