
If the distance \[{\bf{s}}\] covered by a particle in time \[t\] is proportional to the cube root of its velocity, then the acceleration is:
a constant
1. proportional to \[{{\bf{s}}^{\bf{3}}}\]
2. proportional to \[{\bf{1}}/{{\bf{s}}^{\bf{3}}}\]
3. proportional to \[{{\bf{s}}^{\bf{5}}}\]
4. proportional to \[{\bf{1}}/{{\bf{s}}^{\bf{5}}}\]
Answer
216.6k+ views
Hint: In this question we have to correlate the terms given such that the distance is proportional to the cube root of the velocity in this way. And then we can use differentiation with respect to time to solve this question.
Complete answer:
As asked in the question that we have to calculate acceleration according to given data,
Distance \[{\bf{s}}\] of the particle is proportional to the cube root of its velocity such that
\[s{\rm{ }}\alpha {\rm{ }}{v^{\dfrac{1}{3}}}\]
Now, writing it in simplest form we have
\[v{\rm{ }}\alpha {\rm{ }}{{\rm{s}}^3}\, —-(1)\]
But, we can write velocity as the function of distance and time such that
\[v = \dfrac{{ds}}{{dt}}\], put this vale in equation\[(1)\], we get
\[ \Rightarrow \dfrac{{ds}}{{dt}}\alpha {{\rm{s}}^3}\]
\[ \Rightarrow v = \dfrac{{ds}}{{dt}} = p{{\rm{s}}^3} —-(2) \] \[p\] is the proportionality constant
While acceleration is given by,
\[a = \dfrac{{dv}}{{dt}} = \dfrac{d}{{dt}}\left( {p{s^3}} \right)\] , from \[(2)\]
\[ \Rightarrow a = 3p{s^2}\left( {\dfrac{{ds}}{{dt}}} \right)\] … on differentiating … from \[(2)\]
\[ \Rightarrow a = 3{p^2}{s^5}\]
Thus, the answer is the acceleration is directly proportional to the fifth root of \[{\bf{s}}\] i.e., Option 4.
Note: It is very easy to solve this type of question because here are the very basic concepts used from mathematics as well proportionality we are learning from early standards and are very much aware of the concepts. Along with this we must know differentiation and basic concept of distance, velocity and acceleration.
Complete answer:
As asked in the question that we have to calculate acceleration according to given data,
Distance \[{\bf{s}}\] of the particle is proportional to the cube root of its velocity such that
\[s{\rm{ }}\alpha {\rm{ }}{v^{\dfrac{1}{3}}}\]
Now, writing it in simplest form we have
\[v{\rm{ }}\alpha {\rm{ }}{{\rm{s}}^3}\, —-(1)\]
But, we can write velocity as the function of distance and time such that
\[v = \dfrac{{ds}}{{dt}}\], put this vale in equation\[(1)\], we get
\[ \Rightarrow \dfrac{{ds}}{{dt}}\alpha {{\rm{s}}^3}\]
\[ \Rightarrow v = \dfrac{{ds}}{{dt}} = p{{\rm{s}}^3} —-(2) \] \[p\] is the proportionality constant
While acceleration is given by,
\[a = \dfrac{{dv}}{{dt}} = \dfrac{d}{{dt}}\left( {p{s^3}} \right)\] , from \[(2)\]
\[ \Rightarrow a = 3p{s^2}\left( {\dfrac{{ds}}{{dt}}} \right)\] … on differentiating … from \[(2)\]
\[ \Rightarrow a = 3{p^2}{s^5}\]
Thus, the answer is the acceleration is directly proportional to the fifth root of \[{\bf{s}}\] i.e., Option 4.
Note: It is very easy to solve this type of question because here are the very basic concepts used from mathematics as well proportionality we are learning from early standards and are very much aware of the concepts. Along with this we must know differentiation and basic concept of distance, velocity and acceleration.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

