
If the distance between the plane, \[23x - 10y - 2z + 48 = 0\] and the plane containing the lines \[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3}\] and \[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda }\], \[\lambda \in R\] is equal to \[\dfrac{k}{{\sqrt {633} }}\]. What is the value \[k\].
Answer
219.9k+ views
Hint: First we will find the intersection point of the given straight lines. The point lies on the plane in which the lines lie. By using the distance formula, we will calculate the distance between the plane and the point.
Formula used:
Any point on a line \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c} = p\left( {{\rm{say}}} \right)\] are \[\left( {ap + {x_1},bp + {y_1},cp + {z_1}} \right)\].
The distance between the plane \[ax + by + cz + d = 0\] and \[\left( {{x_1},{y_1},{z_1}} \right)\] is \[\left| {\dfrac{{a{x_1} + b{y_1} + c{z_1} + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|\].
Complete step by step solution:
Given lines are \[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3}\] and \[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda }\].
Since the direction ratios of the lines are not the same. So, the lines are not parallel. Thus, the lines intersect each other.
Rewrite the equation of lines.
\[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3} = p\left( {{\rm{say}}} \right)\] ……(1)
\[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda } = q\left( {{\rm{say}}} \right)\] …….(2)
Calculate the value of \[x,y,z\] from equation (1)
\[\dfrac{{x + 1}}{2} = p\]
\[ \Rightarrow x = 2p - 1\]
\[\dfrac{{y - 3}}{4} = p\]
\[ \Rightarrow y = 4p + 3\]
\[\dfrac{{z + 1}}{3} = p\]
\[ \Rightarrow z = 3p - 1\]
Any point on the line (1) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\].
Calculate the value of \[x,y,z\] from equation (2)
\[\dfrac{{x + 3}}{2} = q\]
\[ \Rightarrow x = 2q - 3\]
\[\dfrac{{y + 2}}{6} = q\]
\[ \Rightarrow y = 6q - 2\]
\[\dfrac{{z - 1}}{\lambda } = q\]
\[ \Rightarrow z = \lambda q + 1\]
Any point on the line (1) is \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Assume the intersection point of line (1) and (2) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\] and \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Therefore,
\[2p - 1 = 2q - 3\]
\[ \Rightarrow 2p - 2q = - 2\]
\[ \Rightarrow p - q = - 1\]….(3)
\[4p + 3 = 6q - 2\]
\[ \Rightarrow 4p - 6q = - 5\]….(4)
\[3p - 1 = \lambda q + 1\]….(5)
Now we will solve equation (3) and (4)
Multiply 4 with equation (3) and subtract it from equation (4)
\[\begin{array}{*{20}{c}}{4p}& - &{6q}& = &{ - 5}\\{4p}& - &{4q}& = &{ - 4}\\\hline{}& - &{2q}& = &{ - 1}\end{array}\]
\[ \Rightarrow q = \dfrac{1}{2}\]
Substitute the value of \[q\] in the equation (3)
\[p - \dfrac{1}{2} = - 1\]
\[ \Rightarrow p = - 1 + \dfrac{1}{2}\]
\[ \Rightarrow p = - \dfrac{1}{2}\]
Put the value of \[p\] and \[q\] in the point \[\left( {2p - 1,4p + 3,3p - 1} \right)\]
\[\left( {2p - 1,4p + 3,3p - 1} \right) = \left( {2 \cdot \left( { - \dfrac{1}{2}} \right) - 1,4 \cdot \left( { - \dfrac{1}{2}} \right) + 3,3 \cdot \left( { - \dfrac{1}{2}} \right) - 1} \right)\]
\[ \Rightarrow \left( {2p - 1,4p + 3,3p - 1} \right) = \left( { - 2,1, - \dfrac{5}{2}} \right)\]
Now we will calculate the distance between the point \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] and the plane \[23x - 10y - 2z + 48 = 0\].
The distance is \[\left| {\dfrac{{23 \cdot \left( { - 2} \right) - 10 \cdot 1 - 2 \cdot \left( { - \dfrac{5}{2}} \right) + 48}}{{\sqrt {{{23}^2} + {{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right|\]
\[ = \left| {\dfrac{{ - 46 - 10 + 5 + 48}}{{\sqrt {529 + 100 + 4} }}} \right|\]
\[ = \left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] units.
Given that the distance between plane and \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] is \[\dfrac{k}{{\sqrt {633} }}\].
Equate \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] with \[\dfrac{k}{{\sqrt {633} }}\] to calculate the value of \[k\].
\[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow \dfrac{3}{{\sqrt {633} }} = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow k = 3\]
Hence the value of \[k\] is 3.
Note: Many students often do a common mistake to solve the equation \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]. They find the value of \[k\] as -3 which is incorrect. The distance is always positive. So, \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{3}{{\sqrt {633} }}\]. The correct value of \[k\] is 3.
Formula used:
Any point on a line \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c} = p\left( {{\rm{say}}} \right)\] are \[\left( {ap + {x_1},bp + {y_1},cp + {z_1}} \right)\].
The distance between the plane \[ax + by + cz + d = 0\] and \[\left( {{x_1},{y_1},{z_1}} \right)\] is \[\left| {\dfrac{{a{x_1} + b{y_1} + c{z_1} + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|\].
Complete step by step solution:
Given lines are \[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3}\] and \[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda }\].
Since the direction ratios of the lines are not the same. So, the lines are not parallel. Thus, the lines intersect each other.
Rewrite the equation of lines.
\[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3} = p\left( {{\rm{say}}} \right)\] ……(1)
\[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda } = q\left( {{\rm{say}}} \right)\] …….(2)
Calculate the value of \[x,y,z\] from equation (1)
\[\dfrac{{x + 1}}{2} = p\]
\[ \Rightarrow x = 2p - 1\]
\[\dfrac{{y - 3}}{4} = p\]
\[ \Rightarrow y = 4p + 3\]
\[\dfrac{{z + 1}}{3} = p\]
\[ \Rightarrow z = 3p - 1\]
Any point on the line (1) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\].
Calculate the value of \[x,y,z\] from equation (2)
\[\dfrac{{x + 3}}{2} = q\]
\[ \Rightarrow x = 2q - 3\]
\[\dfrac{{y + 2}}{6} = q\]
\[ \Rightarrow y = 6q - 2\]
\[\dfrac{{z - 1}}{\lambda } = q\]
\[ \Rightarrow z = \lambda q + 1\]
Any point on the line (1) is \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Assume the intersection point of line (1) and (2) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\] and \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Therefore,
\[2p - 1 = 2q - 3\]
\[ \Rightarrow 2p - 2q = - 2\]
\[ \Rightarrow p - q = - 1\]….(3)
\[4p + 3 = 6q - 2\]
\[ \Rightarrow 4p - 6q = - 5\]….(4)
\[3p - 1 = \lambda q + 1\]….(5)
Now we will solve equation (3) and (4)
Multiply 4 with equation (3) and subtract it from equation (4)
\[\begin{array}{*{20}{c}}{4p}& - &{6q}& = &{ - 5}\\{4p}& - &{4q}& = &{ - 4}\\\hline{}& - &{2q}& = &{ - 1}\end{array}\]
\[ \Rightarrow q = \dfrac{1}{2}\]
Substitute the value of \[q\] in the equation (3)
\[p - \dfrac{1}{2} = - 1\]
\[ \Rightarrow p = - 1 + \dfrac{1}{2}\]
\[ \Rightarrow p = - \dfrac{1}{2}\]
Put the value of \[p\] and \[q\] in the point \[\left( {2p - 1,4p + 3,3p - 1} \right)\]
\[\left( {2p - 1,4p + 3,3p - 1} \right) = \left( {2 \cdot \left( { - \dfrac{1}{2}} \right) - 1,4 \cdot \left( { - \dfrac{1}{2}} \right) + 3,3 \cdot \left( { - \dfrac{1}{2}} \right) - 1} \right)\]
\[ \Rightarrow \left( {2p - 1,4p + 3,3p - 1} \right) = \left( { - 2,1, - \dfrac{5}{2}} \right)\]
Now we will calculate the distance between the point \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] and the plane \[23x - 10y - 2z + 48 = 0\].
The distance is \[\left| {\dfrac{{23 \cdot \left( { - 2} \right) - 10 \cdot 1 - 2 \cdot \left( { - \dfrac{5}{2}} \right) + 48}}{{\sqrt {{{23}^2} + {{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right|\]
\[ = \left| {\dfrac{{ - 46 - 10 + 5 + 48}}{{\sqrt {529 + 100 + 4} }}} \right|\]
\[ = \left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] units.
Given that the distance between plane and \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] is \[\dfrac{k}{{\sqrt {633} }}\].
Equate \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] with \[\dfrac{k}{{\sqrt {633} }}\] to calculate the value of \[k\].
\[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow \dfrac{3}{{\sqrt {633} }} = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow k = 3\]
Hence the value of \[k\] is 3.
Note: Many students often do a common mistake to solve the equation \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]. They find the value of \[k\] as -3 which is incorrect. The distance is always positive. So, \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{3}{{\sqrt {633} }}\]. The correct value of \[k\] is 3.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

