
If the distance between the plane, \[23x - 10y - 2z + 48 = 0\] and the plane containing the lines \[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3}\] and \[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda }\], \[\lambda \in R\] is equal to \[\dfrac{k}{{\sqrt {633} }}\]. What is the value \[k\].
Answer
164.4k+ views
Hint: First we will find the intersection point of the given straight lines. The point lies on the plane in which the lines lie. By using the distance formula, we will calculate the distance between the plane and the point.
Formula used:
Any point on a line \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c} = p\left( {{\rm{say}}} \right)\] are \[\left( {ap + {x_1},bp + {y_1},cp + {z_1}} \right)\].
The distance between the plane \[ax + by + cz + d = 0\] and \[\left( {{x_1},{y_1},{z_1}} \right)\] is \[\left| {\dfrac{{a{x_1} + b{y_1} + c{z_1} + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|\].
Complete step by step solution:
Given lines are \[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3}\] and \[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda }\].
Since the direction ratios of the lines are not the same. So, the lines are not parallel. Thus, the lines intersect each other.
Rewrite the equation of lines.
\[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3} = p\left( {{\rm{say}}} \right)\] ……(1)
\[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda } = q\left( {{\rm{say}}} \right)\] …….(2)
Calculate the value of \[x,y,z\] from equation (1)
\[\dfrac{{x + 1}}{2} = p\]
\[ \Rightarrow x = 2p - 1\]
\[\dfrac{{y - 3}}{4} = p\]
\[ \Rightarrow y = 4p + 3\]
\[\dfrac{{z + 1}}{3} = p\]
\[ \Rightarrow z = 3p - 1\]
Any point on the line (1) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\].
Calculate the value of \[x,y,z\] from equation (2)
\[\dfrac{{x + 3}}{2} = q\]
\[ \Rightarrow x = 2q - 3\]
\[\dfrac{{y + 2}}{6} = q\]
\[ \Rightarrow y = 6q - 2\]
\[\dfrac{{z - 1}}{\lambda } = q\]
\[ \Rightarrow z = \lambda q + 1\]
Any point on the line (1) is \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Assume the intersection point of line (1) and (2) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\] and \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Therefore,
\[2p - 1 = 2q - 3\]
\[ \Rightarrow 2p - 2q = - 2\]
\[ \Rightarrow p - q = - 1\]….(3)
\[4p + 3 = 6q - 2\]
\[ \Rightarrow 4p - 6q = - 5\]….(4)
\[3p - 1 = \lambda q + 1\]….(5)
Now we will solve equation (3) and (4)
Multiply 4 with equation (3) and subtract it from equation (4)
\[\begin{array}{*{20}{c}}{4p}& - &{6q}& = &{ - 5}\\{4p}& - &{4q}& = &{ - 4}\\\hline{}& - &{2q}& = &{ - 1}\end{array}\]
\[ \Rightarrow q = \dfrac{1}{2}\]
Substitute the value of \[q\] in the equation (3)
\[p - \dfrac{1}{2} = - 1\]
\[ \Rightarrow p = - 1 + \dfrac{1}{2}\]
\[ \Rightarrow p = - \dfrac{1}{2}\]
Put the value of \[p\] and \[q\] in the point \[\left( {2p - 1,4p + 3,3p - 1} \right)\]
\[\left( {2p - 1,4p + 3,3p - 1} \right) = \left( {2 \cdot \left( { - \dfrac{1}{2}} \right) - 1,4 \cdot \left( { - \dfrac{1}{2}} \right) + 3,3 \cdot \left( { - \dfrac{1}{2}} \right) - 1} \right)\]
\[ \Rightarrow \left( {2p - 1,4p + 3,3p - 1} \right) = \left( { - 2,1, - \dfrac{5}{2}} \right)\]
Now we will calculate the distance between the point \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] and the plane \[23x - 10y - 2z + 48 = 0\].
The distance is \[\left| {\dfrac{{23 \cdot \left( { - 2} \right) - 10 \cdot 1 - 2 \cdot \left( { - \dfrac{5}{2}} \right) + 48}}{{\sqrt {{{23}^2} + {{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right|\]
\[ = \left| {\dfrac{{ - 46 - 10 + 5 + 48}}{{\sqrt {529 + 100 + 4} }}} \right|\]
\[ = \left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] units.
Given that the distance between plane and \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] is \[\dfrac{k}{{\sqrt {633} }}\].
Equate \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] with \[\dfrac{k}{{\sqrt {633} }}\] to calculate the value of \[k\].
\[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow \dfrac{3}{{\sqrt {633} }} = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow k = 3\]
Hence the value of \[k\] is 3.
Note: Many students often do a common mistake to solve the equation \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]. They find the value of \[k\] as -3 which is incorrect. The distance is always positive. So, \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{3}{{\sqrt {633} }}\]. The correct value of \[k\] is 3.
Formula used:
Any point on a line \[\dfrac{{x - {x_1}}}{a} = \dfrac{{y - {y_1}}}{b} = \dfrac{{z - {z_1}}}{c} = p\left( {{\rm{say}}} \right)\] are \[\left( {ap + {x_1},bp + {y_1},cp + {z_1}} \right)\].
The distance between the plane \[ax + by + cz + d = 0\] and \[\left( {{x_1},{y_1},{z_1}} \right)\] is \[\left| {\dfrac{{a{x_1} + b{y_1} + c{z_1} + d}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right|\].
Complete step by step solution:
Given lines are \[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3}\] and \[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda }\].
Since the direction ratios of the lines are not the same. So, the lines are not parallel. Thus, the lines intersect each other.
Rewrite the equation of lines.
\[\dfrac{{x + 1}}{2} = \dfrac{{y - 3}}{4} = \dfrac{{z + 1}}{3} = p\left( {{\rm{say}}} \right)\] ……(1)
\[\dfrac{{x + 3}}{2} = \dfrac{{y + 2}}{6} = \dfrac{{z - 1}}{\lambda } = q\left( {{\rm{say}}} \right)\] …….(2)
Calculate the value of \[x,y,z\] from equation (1)
\[\dfrac{{x + 1}}{2} = p\]
\[ \Rightarrow x = 2p - 1\]
\[\dfrac{{y - 3}}{4} = p\]
\[ \Rightarrow y = 4p + 3\]
\[\dfrac{{z + 1}}{3} = p\]
\[ \Rightarrow z = 3p - 1\]
Any point on the line (1) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\].
Calculate the value of \[x,y,z\] from equation (2)
\[\dfrac{{x + 3}}{2} = q\]
\[ \Rightarrow x = 2q - 3\]
\[\dfrac{{y + 2}}{6} = q\]
\[ \Rightarrow y = 6q - 2\]
\[\dfrac{{z - 1}}{\lambda } = q\]
\[ \Rightarrow z = \lambda q + 1\]
Any point on the line (1) is \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Assume the intersection point of line (1) and (2) is \[\left( {2p - 1,4p + 3,3p - 1} \right)\] and \[\left( {2q - 3,6q - 2,\lambda q + 1} \right)\].
Therefore,
\[2p - 1 = 2q - 3\]
\[ \Rightarrow 2p - 2q = - 2\]
\[ \Rightarrow p - q = - 1\]….(3)
\[4p + 3 = 6q - 2\]
\[ \Rightarrow 4p - 6q = - 5\]….(4)
\[3p - 1 = \lambda q + 1\]….(5)
Now we will solve equation (3) and (4)
Multiply 4 with equation (3) and subtract it from equation (4)
\[\begin{array}{*{20}{c}}{4p}& - &{6q}& = &{ - 5}\\{4p}& - &{4q}& = &{ - 4}\\\hline{}& - &{2q}& = &{ - 1}\end{array}\]
\[ \Rightarrow q = \dfrac{1}{2}\]
Substitute the value of \[q\] in the equation (3)
\[p - \dfrac{1}{2} = - 1\]
\[ \Rightarrow p = - 1 + \dfrac{1}{2}\]
\[ \Rightarrow p = - \dfrac{1}{2}\]
Put the value of \[p\] and \[q\] in the point \[\left( {2p - 1,4p + 3,3p - 1} \right)\]
\[\left( {2p - 1,4p + 3,3p - 1} \right) = \left( {2 \cdot \left( { - \dfrac{1}{2}} \right) - 1,4 \cdot \left( { - \dfrac{1}{2}} \right) + 3,3 \cdot \left( { - \dfrac{1}{2}} \right) - 1} \right)\]
\[ \Rightarrow \left( {2p - 1,4p + 3,3p - 1} \right) = \left( { - 2,1, - \dfrac{5}{2}} \right)\]
Now we will calculate the distance between the point \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] and the plane \[23x - 10y - 2z + 48 = 0\].
The distance is \[\left| {\dfrac{{23 \cdot \left( { - 2} \right) - 10 \cdot 1 - 2 \cdot \left( { - \dfrac{5}{2}} \right) + 48}}{{\sqrt {{{23}^2} + {{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right|\]
\[ = \left| {\dfrac{{ - 46 - 10 + 5 + 48}}{{\sqrt {529 + 100 + 4} }}} \right|\]
\[ = \left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] units.
Given that the distance between plane and \[\left( { - 2,1, - \dfrac{5}{2}} \right)\] is \[\dfrac{k}{{\sqrt {633} }}\].
Equate \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right|\] with \[\dfrac{k}{{\sqrt {633} }}\] to calculate the value of \[k\].
\[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow \dfrac{3}{{\sqrt {633} }} = \dfrac{k}{{\sqrt {633} }}\]
\[ \Rightarrow k = 3\]
Hence the value of \[k\] is 3.
Note: Many students often do a common mistake to solve the equation \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{k}{{\sqrt {633} }}\]. They find the value of \[k\] as -3 which is incorrect. The distance is always positive. So, \[\left| {\dfrac{{ - 3}}{{\sqrt {633} }}} \right| = \dfrac{3}{{\sqrt {633} }}\]. The correct value of \[k\] is 3.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
