
- If the curves \[x = {y^4}\] and \[xy = k\] cut at right angles, then find the value of \[{\left( {4k} \right)^6}\].
Answer
219k+ views
- Hint: The two given curves cut at right angles. So, the curves have a point of intersection at which a perpendicular common tangent exists. Find the point of intersection and the slopes of the tangent lines. The two tangents being perpendicular, apply the condition of perpendicularity of two straight lines and find the value of \[k\].
Formula used:
If two straight lines having slopes \[{m_1}\] and \[{m_2}\] be perpendicular, then the product of the slopes is equal to \[{m_1}{m_2} = - 1\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
\[\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}\]
\[\dfrac{d}{{dx}}\left( k \right) = 0\], \[k\] being a constant
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
Complete step by step solution:
The given two equations are \[x = {y^4}.....\left( i \right)\] and \[xy = k.....\left( {ii} \right)\]
Solve the equations and find the point of intersection.
Substitute the expression for \[x\] from equation \[\left( i \right)\] in equation \[\left( {ii} \right)\]
\[{y^4} \cdot y = k\]
Find the value of \[y\].
Use the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[\begin{array}{l} \Rightarrow {y^5} = k\\ \Rightarrow y = {k^{\dfrac{1}{5}}}\end{array}\]
Now, find the value of \[x\] using the value of \[y\].
Putting the value of \[y\] in equation \[\left( i \right)\], we get
\[x = {\left( {{k^{\dfrac{1}{5}}}} \right)^4}\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow x = {k^{\dfrac{4}{5}}}\]
\[\therefore \] The point of intersection is \[\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)\]
Find the slope of the curves \[\left( i \right)\] and \[\left( {ii} \right)\].
Differentiate both sides of the equation \[\left( i \right)\] with respect to \[y\]
\[\dfrac{d}{{dy}}\left( x \right) = \dfrac{d}{{dy}}\left( {{y^4}} \right).....\left( {iii} \right)\]
Use the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Putting \[n = 4\], we get \[\dfrac{d}{{dx}}\left( {{x^4}} \right) = 4{x^3}\]
So, \[\dfrac{d}{{dy}}\left( {{y^4}} \right) = 4{y^3}\] and \[\dfrac{d}{{dy}}\left( x \right) = \dfrac{{dx}}{{dy}}\]
\[\therefore \] from equation \[\left( {iii} \right)\], we get \[\dfrac{{dx}}{{dy}} = 4{y^3}\]
Take the reciprocal
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{4{y^3}}}\]
Replace \[x\] by \[{k^{\dfrac{4}{5}}}\] and \[y\] by \[{k^{\dfrac{1}{5}}}\]
\[ \Rightarrow {\left[ {\dfrac{{dy}}{{dx}}} \right]_{\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)}} = \dfrac{1}{{4 \times {{\left( {{k^{\dfrac{1}{5}}}} \right)}^3}}} = \dfrac{1}{{4{k^{\dfrac{3}{5}}}}}\]
So, the slope of the tangent to the curve \[\left( i \right)\] at the point \[\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)\] is \[\dfrac{1}{{4{k^{\dfrac{3}{5}}}}}\]
Differentiate both sides of the equation \[\left( {ii} \right)\] with respect to \[x\]
\[\dfrac{d}{{dx}}\left( {xy} \right) = \dfrac{d}{{dx}}\left( k \right).....\left( {iv} \right)\]
Use the product rule \[\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}\]
Putting \[f\left( x \right) = x\] and \[g\left( x \right) = y\], we get
\[\dfrac{d}{{dx}}\left( {xy} \right) = x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( x \right)\]
Now, \[\dfrac{d}{{dx}}\left( y \right) = \dfrac{{dy}}{{dx}}\] and \[\dfrac{d}{{dx}}\left( x \right) = 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {xy} \right) = x\dfrac{{dy}}{{dx}} + y\]
and \[\dfrac{d}{{dx}}\left( k \right) = 0\], \[k\] being a constant.
From equation \[\left( {iv} \right)\], we get
\[x\dfrac{{dy}}{{dx}} + y = 0\]
Solve this equation for \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{y}{x}\]
Replace \[x\] by \[{k^{\dfrac{4}{5}}}\] and \[y\] by \[{k^{\dfrac{1}{5}}}\]
\[ \Rightarrow {\left[ {\dfrac{{dy}}{{dx}}} \right]_{\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)}} = - \dfrac{{{k^{\dfrac{1}{5}}}}}{{{k^{\dfrac{4}{5}}}}}\]
Use the formula \[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\]
\[ \Rightarrow {\left[ {\dfrac{{dy}}{{dx}}} \right]_{\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)}} = - {k^{\dfrac{1}{5} - \dfrac{4}{5}}} = - {k^{ - \dfrac{3}{5}}}\]
So, the slope of the tangent to the curve \[\left( {ii} \right)\] at the point \[\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)\] is \[ - {k^{ - \dfrac{3}{5}}}\]
Use the condition for perpendicularity of two straight lines.
Product of slopes of two perpendicular straight lines is equal to \[\left( { - 1} \right)\].
So,
\[\begin{array}{l}\left( {\dfrac{1}{{4{k^{\dfrac{3}{5}}}}}} \right)\left( { - {k^{ - \dfrac{3}{5}}}} \right) = - 1\\ \Rightarrow - \dfrac{{{k^{ - \dfrac{3}{5}}}}}{{4{k^{\dfrac{3}{5}}}}} = - 1\\ \Rightarrow \dfrac{1}{4}{k^{ - \dfrac{3}{5} - \dfrac{3}{5}}} = 1\\ \Rightarrow {k^{ - \dfrac{6}{5}}} = 4\end{array}\]
Multiplying the power of both sides by \[\left( { - \dfrac{5}{6}} \right)\]
\[ \Rightarrow {\left( {{k^{ - \dfrac{6}{5}}}} \right)^{ - \dfrac{5}{6}}} = {\left( 4 \right)^{ - \dfrac{5}{6}}}\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow k = {\left( 4 \right)^{ - \dfrac{5}{6}}}\]
Multiply both sides by \[4\]
\[ \Rightarrow 4k = 4 \times {\left( 4 \right)^{ - \dfrac{5}{6}}}\]
Use the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow 4k = {4^{1 - \dfrac{5}{6}}} = {4^{\dfrac{1}{6}}}\]
Multiply the power of both sides by \[6\]
\[ \Rightarrow {\left( {4k} \right)^6} = {\left( {{4^{\dfrac{1}{6}}}} \right)^6}\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {4k} \right)^6} = 4\]
Hence the value of \[{\left( {4k} \right)^6}\] is \[4\].
Note: If two straight lines are parallel, then the slopes of the lines are proportional but if the lines be perpendicular, then product of slopes is equal to \[\left( { - 1} \right)\]. Differentiating a function \[y = f\left( x \right)\] with respect to \[x\] at a point, we get slope of that curve at that point.
Formula used:
If two straight lines having slopes \[{m_1}\] and \[{m_2}\] be perpendicular, then the product of the slopes is equal to \[{m_1}{m_2} = - 1\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
\[\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}\]
\[\dfrac{d}{{dx}}\left( k \right) = 0\], \[k\] being a constant
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
Complete step by step solution:
The given two equations are \[x = {y^4}.....\left( i \right)\] and \[xy = k.....\left( {ii} \right)\]
Solve the equations and find the point of intersection.
Substitute the expression for \[x\] from equation \[\left( i \right)\] in equation \[\left( {ii} \right)\]
\[{y^4} \cdot y = k\]
Find the value of \[y\].
Use the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[\begin{array}{l} \Rightarrow {y^5} = k\\ \Rightarrow y = {k^{\dfrac{1}{5}}}\end{array}\]
Now, find the value of \[x\] using the value of \[y\].
Putting the value of \[y\] in equation \[\left( i \right)\], we get
\[x = {\left( {{k^{\dfrac{1}{5}}}} \right)^4}\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow x = {k^{\dfrac{4}{5}}}\]
\[\therefore \] The point of intersection is \[\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)\]
Find the slope of the curves \[\left( i \right)\] and \[\left( {ii} \right)\].
Differentiate both sides of the equation \[\left( i \right)\] with respect to \[y\]
\[\dfrac{d}{{dy}}\left( x \right) = \dfrac{d}{{dy}}\left( {{y^4}} \right).....\left( {iii} \right)\]
Use the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Putting \[n = 4\], we get \[\dfrac{d}{{dx}}\left( {{x^4}} \right) = 4{x^3}\]
So, \[\dfrac{d}{{dy}}\left( {{y^4}} \right) = 4{y^3}\] and \[\dfrac{d}{{dy}}\left( x \right) = \dfrac{{dx}}{{dy}}\]
\[\therefore \] from equation \[\left( {iii} \right)\], we get \[\dfrac{{dx}}{{dy}} = 4{y^3}\]
Take the reciprocal
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{4{y^3}}}\]
Replace \[x\] by \[{k^{\dfrac{4}{5}}}\] and \[y\] by \[{k^{\dfrac{1}{5}}}\]
\[ \Rightarrow {\left[ {\dfrac{{dy}}{{dx}}} \right]_{\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)}} = \dfrac{1}{{4 \times {{\left( {{k^{\dfrac{1}{5}}}} \right)}^3}}} = \dfrac{1}{{4{k^{\dfrac{3}{5}}}}}\]
So, the slope of the tangent to the curve \[\left( i \right)\] at the point \[\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)\] is \[\dfrac{1}{{4{k^{\dfrac{3}{5}}}}}\]
Differentiate both sides of the equation \[\left( {ii} \right)\] with respect to \[x\]
\[\dfrac{d}{{dx}}\left( {xy} \right) = \dfrac{d}{{dx}}\left( k \right).....\left( {iv} \right)\]
Use the product rule \[\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}\]
Putting \[f\left( x \right) = x\] and \[g\left( x \right) = y\], we get
\[\dfrac{d}{{dx}}\left( {xy} \right) = x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( x \right)\]
Now, \[\dfrac{d}{{dx}}\left( y \right) = \dfrac{{dy}}{{dx}}\] and \[\dfrac{d}{{dx}}\left( x \right) = 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {xy} \right) = x\dfrac{{dy}}{{dx}} + y\]
and \[\dfrac{d}{{dx}}\left( k \right) = 0\], \[k\] being a constant.
From equation \[\left( {iv} \right)\], we get
\[x\dfrac{{dy}}{{dx}} + y = 0\]
Solve this equation for \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{y}{x}\]
Replace \[x\] by \[{k^{\dfrac{4}{5}}}\] and \[y\] by \[{k^{\dfrac{1}{5}}}\]
\[ \Rightarrow {\left[ {\dfrac{{dy}}{{dx}}} \right]_{\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)}} = - \dfrac{{{k^{\dfrac{1}{5}}}}}{{{k^{\dfrac{4}{5}}}}}\]
Use the formula \[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\]
\[ \Rightarrow {\left[ {\dfrac{{dy}}{{dx}}} \right]_{\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)}} = - {k^{\dfrac{1}{5} - \dfrac{4}{5}}} = - {k^{ - \dfrac{3}{5}}}\]
So, the slope of the tangent to the curve \[\left( {ii} \right)\] at the point \[\left( {{k^{\dfrac{4}{5}}},{k^{\dfrac{1}{5}}}} \right)\] is \[ - {k^{ - \dfrac{3}{5}}}\]
Use the condition for perpendicularity of two straight lines.
Product of slopes of two perpendicular straight lines is equal to \[\left( { - 1} \right)\].
So,
\[\begin{array}{l}\left( {\dfrac{1}{{4{k^{\dfrac{3}{5}}}}}} \right)\left( { - {k^{ - \dfrac{3}{5}}}} \right) = - 1\\ \Rightarrow - \dfrac{{{k^{ - \dfrac{3}{5}}}}}{{4{k^{\dfrac{3}{5}}}}} = - 1\\ \Rightarrow \dfrac{1}{4}{k^{ - \dfrac{3}{5} - \dfrac{3}{5}}} = 1\\ \Rightarrow {k^{ - \dfrac{6}{5}}} = 4\end{array}\]
Multiplying the power of both sides by \[\left( { - \dfrac{5}{6}} \right)\]
\[ \Rightarrow {\left( {{k^{ - \dfrac{6}{5}}}} \right)^{ - \dfrac{5}{6}}} = {\left( 4 \right)^{ - \dfrac{5}{6}}}\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow k = {\left( 4 \right)^{ - \dfrac{5}{6}}}\]
Multiply both sides by \[4\]
\[ \Rightarrow 4k = 4 \times {\left( 4 \right)^{ - \dfrac{5}{6}}}\]
Use the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow 4k = {4^{1 - \dfrac{5}{6}}} = {4^{\dfrac{1}{6}}}\]
Multiply the power of both sides by \[6\]
\[ \Rightarrow {\left( {4k} \right)^6} = {\left( {{4^{\dfrac{1}{6}}}} \right)^6}\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {4k} \right)^6} = 4\]
Hence the value of \[{\left( {4k} \right)^6}\] is \[4\].
Note: If two straight lines are parallel, then the slopes of the lines are proportional but if the lines be perpendicular, then product of slopes is equal to \[\left( { - 1} \right)\]. Differentiating a function \[y = f\left( x \right)\] with respect to \[x\] at a point, we get slope of that curve at that point.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

