
If \[\tan\alpha = \dfrac{m}{{\left( {m + 1} \right)}}\] and \[\tan\beta = \dfrac{1}{{\left( {2m + 1} \right)}}\]. Then find the value of \[\left( {\alpha + \beta } \right)\].
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{4}\]
C. 0
D. \[\dfrac{\pi }{2}\]
Answer
164.4k+ views
Hint: In the given question, two trigonometric equations of \[\tan\] are given. By substituting the given equations in the tangent addition formula, we will find the value of \[\tan \left( {\alpha + \beta } \right)\]. Then using the value of trigonometric angles, we will find the value of \[\left( {\alpha + \beta } \right)\].
Formula Used:
tangent addition formula: \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\ tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Complete step by step solution:
The given trigonometric equations are \[\tan\alpha = \dfrac{m}{{\left( {m + 1} \right)}}\] and \[\tan\beta = \dfrac{1}{{\left( {2m + 1} \right)}}\].
Let’s substitute the given equations in the tangent addition formula.
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan\alpha + \tan\beta }}{{1 - \tan\alpha\ tan\beta }}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{m}{{m + 1}} + \dfrac{1}{{2m + 1}}}}{{1 - \left( {\dfrac{m}{{m + 1}}} \right)\left( {\dfrac{1}{{2m + 1}}} \right)}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{m\left( {2m + 1} \right) + \left( {m + 1} \right)}}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}{{1 - \dfrac{m}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + m + m + 1}}{{\left( {m + 1} \right)\left( {2m + 1} \right) - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + m + 2m + 1 - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + 2m + 1}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = 1\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \tan \left( {\dfrac{\pi }{4}} \right)\] [Since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]]
\[ \Rightarrow \]\[\alpha + \beta = \dfrac{\pi }{4}\]
Hence the correct option is option B
Note: Students are often confused with the formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 + \tan A\tan B}}\] . But the correct tangent addition formula is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}\].
Formula Used:
tangent addition formula: \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\ tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Complete step by step solution:
The given trigonometric equations are \[\tan\alpha = \dfrac{m}{{\left( {m + 1} \right)}}\] and \[\tan\beta = \dfrac{1}{{\left( {2m + 1} \right)}}\].
Let’s substitute the given equations in the tangent addition formula.
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan\alpha + \tan\beta }}{{1 - \tan\alpha\ tan\beta }}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{m}{{m + 1}} + \dfrac{1}{{2m + 1}}}}{{1 - \left( {\dfrac{m}{{m + 1}}} \right)\left( {\dfrac{1}{{2m + 1}}} \right)}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{m\left( {2m + 1} \right) + \left( {m + 1} \right)}}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}{{1 - \dfrac{m}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + m + m + 1}}{{\left( {m + 1} \right)\left( {2m + 1} \right) - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + m + 2m + 1 - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + 2m + 1}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = 1\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \tan \left( {\dfrac{\pi }{4}} \right)\] [Since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]]
\[ \Rightarrow \]\[\alpha + \beta = \dfrac{\pi }{4}\]
Hence the correct option is option B
Note: Students are often confused with the formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 + \tan A\tan B}}\] . But the correct tangent addition formula is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}\].
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Difference Between Natural and Whole Numbers: JEE Main 2024

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
