
If \[\tan\alpha \], and \[\tan\beta \] are the roots of the equation \[{x^2} + px + q = 0\] where \[\left( {p \ne 0} \right)\] , then which of the following equation is true?
A. \[\sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\]
B. \[\tan\left( {\alpha + \beta } \right) = \dfrac{p}{{q - 1}}\]
C. \[\cos\left( {\alpha + \beta } \right) = 1 - q\]
D. \[\sin\left( {\alpha + \beta } \right) = - p\]
Answer
163.8k+ views
Hint: First, calculate the sum and product of the roots of a quadratic equation. Then substitute the values of the sum and product of the roots in the formula of \[\tan\left( {\alpha + \beta } \right)\] and solve it. After that, use the trigonometric ratio \[\tan A = \dfrac{{\sin A}}{{\cos A}}\] to calculate the values of \[\sin\left( {\alpha + \beta } \right)\], and \[\cos\left( {\alpha + \beta } \right)\]. In the end, substitute the values of \[\sin\left( {\alpha + \beta } \right)\], and \[\cos\left( {\alpha + \beta } \right)\] in the expression \[\sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right)\] and find the value of the expression. Verify the values of each expression with the given options to get the required answer.
Formula used
\[\tan A = \dfrac{{\sin A}}{{\cos A}}\]
\[\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
Given:
\[\tan\alpha \], and \[\tan\beta \] are the roots of the equation \[{x^2} + px + q = 0\] where \[\left( {p \ne 0} \right)\]
Let’s calculate the sum and product of the roots of the given quadratic equation.
We get,
Sum of the roots: \[\tan \alpha + \tan \beta = - p\]
Product of the roots: \[\tan \alpha \times \tan \beta = q\]
Now verify each option.
Substitute the values of \[\tan\alpha + \tan\beta = - p\], and \[\tan \alpha \times \tan \beta = q\] in the formula of \[\tan\left( {\alpha + \beta } \right)\].
We get,
\[\tan\left( {\alpha + \beta } \right) = \dfrac{{tan \alpha + \tan \beta }}{{1 - \tan \alpha \times tan \beta }}\]
\[ \Rightarrow \tan\left( {\alpha + \beta } \right) = \dfrac{{ - p}}{{1 - q}}\]
\[ \Rightarrow \tan\left( {\alpha + \beta } \right) = \dfrac{p}{{q - 1}}\]
Hence, option B is correct.
Now apply the trigonometric ratio \[\tan A = \dfrac{{\sin A}}{{\cos A}}\] to find the values of \[\sin\left( {\alpha + \beta } \right)\], and \[\cos\left( {\alpha + \beta } \right)\].
We get,
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\sin\left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}}\]
\[ \Rightarrow \dfrac{p}{{q - 1}} = \dfrac{{\sin\left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}}\]
After equating both sides. We get
\[\sin\left( {\alpha + \beta } \right) = p\] and \[\cos\left( {\alpha + \beta } \right) = q - 1\]
From the above equations, we observe that the options C and D are incorrect.
Now substitute the values of \[\sin\left( {\alpha + \beta } \right)\], and \[\cos\left( {\alpha + \beta } \right)\] in the expression \[\sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right)\].
\[\sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2} + p \times p \times \left( {q - 1} \right) + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2} + {p^2}\left( {q - 1} \right) + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2} + {p^2}q - {p^2} + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2}q + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\left[ {{p^2} + {{\left( {q - 1} \right)}^2}} \right]\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\left[ {\sin^{2}\left( {\alpha + \beta } \right) + \cos^{2}\left( {\alpha + \beta } \right)} \right]\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\left[ 1 \right]\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\]
Therefore, option A is correct.
Hence the correct options are A and B.
Note: The sum and product of a quadratic equation are calculated by using the coefficients of the variables.
If \[\alpha \], and \[\beta \] are the roots of the general quadratic equation \[a{x^2} + bx + c = 0\] where \[\left( {b \ne 0} \right)\], then
Sum of the roots: \[\alpha + \beta = \dfrac{{ - b}}{a}\]
Product of the roots: \[\alpha \beta = \dfrac{c}{a}\]
Formula used
\[\tan A = \dfrac{{\sin A}}{{\cos A}}\]
\[\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution
Given:
\[\tan\alpha \], and \[\tan\beta \] are the roots of the equation \[{x^2} + px + q = 0\] where \[\left( {p \ne 0} \right)\]
Let’s calculate the sum and product of the roots of the given quadratic equation.
We get,
Sum of the roots: \[\tan \alpha + \tan \beta = - p\]
Product of the roots: \[\tan \alpha \times \tan \beta = q\]
Now verify each option.
Substitute the values of \[\tan\alpha + \tan\beta = - p\], and \[\tan \alpha \times \tan \beta = q\] in the formula of \[\tan\left( {\alpha + \beta } \right)\].
We get,
\[\tan\left( {\alpha + \beta } \right) = \dfrac{{tan \alpha + \tan \beta }}{{1 - \tan \alpha \times tan \beta }}\]
\[ \Rightarrow \tan\left( {\alpha + \beta } \right) = \dfrac{{ - p}}{{1 - q}}\]
\[ \Rightarrow \tan\left( {\alpha + \beta } \right) = \dfrac{p}{{q - 1}}\]
Hence, option B is correct.
Now apply the trigonometric ratio \[\tan A = \dfrac{{\sin A}}{{\cos A}}\] to find the values of \[\sin\left( {\alpha + \beta } \right)\], and \[\cos\left( {\alpha + \beta } \right)\].
We get,
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\sin\left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}}\]
\[ \Rightarrow \dfrac{p}{{q - 1}} = \dfrac{{\sin\left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}}\]
After equating both sides. We get
\[\sin\left( {\alpha + \beta } \right) = p\] and \[\cos\left( {\alpha + \beta } \right) = q - 1\]
From the above equations, we observe that the options C and D are incorrect.
Now substitute the values of \[\sin\left( {\alpha + \beta } \right)\], and \[\cos\left( {\alpha + \beta } \right)\] in the expression \[\sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right)\].
\[\sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2} + p \times p \times \left( {q - 1} \right) + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2} + {p^2}\left( {q - 1} \right) + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2} + {p^2}q - {p^2} + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = {p^2}q + q{\left( {q - 1} \right)^2}\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\left[ {{p^2} + {{\left( {q - 1} \right)}^2}} \right]\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\left[ {\sin^{2}\left( {\alpha + \beta } \right) + \cos^{2}\left( {\alpha + \beta } \right)} \right]\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\left[ 1 \right]\]
\[ \Rightarrow \sin^{2}\left( {\alpha + \beta } \right) + p\sin\left( {\alpha + \beta } \right)\cos\left( {\alpha + \beta } \right) + q\cos^{2}\left( {\alpha + \beta } \right) = q\]
Therefore, option A is correct.
Hence the correct options are A and B.
Note: The sum and product of a quadratic equation are calculated by using the coefficients of the variables.
If \[\alpha \], and \[\beta \] are the roots of the general quadratic equation \[a{x^2} + bx + c = 0\] where \[\left( {b \ne 0} \right)\], then
Sum of the roots: \[\alpha + \beta = \dfrac{{ - b}}{a}\]
Product of the roots: \[\alpha \beta = \dfrac{c}{a}\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
