
If \[\tan \left( \dfrac{\alpha }{2} \right)\] and \[\tan \left( \dfrac{\beta }{2} \right)\] are the roots of \[8{{x}^{2}}-26x+15=0\], then \[\cos \left( \alpha +\beta \right)\] is equal to
a) \[\dfrac{627}{726}\]
b) \[-\left( \dfrac{627}{725} \right)\]
c) \[-1\]
d) None of these.
Answer
163.5k+ views
Hint: We know that if \[\alpha \] and \[\beta \] are the roots of the quadratic equation \[a{{x}^{2}}+bx+c=0\] then \[\alpha +\beta =-\dfrac{b}{a}\] and \[\alpha \times \beta =\dfrac{c}{a}\]. Using this concept and some trigonometric formula we can solve the given question.
Formula Used:
i) \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
ii) \[\cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}\]
Complete step by step solution:
Given \[\tan \left( \dfrac{\alpha }{2} \right)\] and \[\tan \left( \dfrac{\beta }{2} \right)\] are the roots of \[8{{x}^{2}}-26x+15=0\], where, \[a=8,b=-26\] and \[c=15\] then we have
\[\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)=-\left( \dfrac{-26}{8} \right)=\dfrac{26}{8}\,\,\,......(1)\] and
\[\tan \left( \dfrac{\alpha }{2} \right)\times \tan \left( \dfrac{\beta }{2} \right)=\dfrac{15}{8}\,\,\,\,......(2)\]
We know that \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\],
Then, we have
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}\]
Using equation (1) and (2) we have,
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\left( \dfrac{26}{8} \right)}{\left( 1-\left( \dfrac{15}{8} \right) \right)}\]
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\left( \dfrac{26}{8} \right)}{\left( \dfrac{8-15}{8} \right)}\]
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\left( \dfrac{26}{8} \right)}{\left( \dfrac{-7}{8} \right)}\]
Simplifying we have,
\[\Rightarrow \tan \left( \dfrac{\alpha +\beta }{2} \right)=-\dfrac{26}{7}\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 3 \right)\]
Now we also know that \[\cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}\]
Then,
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{1-{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}\]
Using equation (3) we know that,
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{\left( 1-{{\left( -\dfrac{26}{7} \right)}^{2}} \right)}{\left( 1+{{\left( -\dfrac{26}{7} \right)}^{2}} \right)}\]
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{\left( 1-\dfrac{676}{49} \right)}{\left( 1+\dfrac{676}{49} \right)}\]
Taking LCM and simplifying we have
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{\left( \dfrac{49-676}{49} \right)}{\left( \dfrac{49+676}{49} \right)}\]
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{-627}{725}\]
Or
\[\Rightarrow \cos \left( \alpha +\beta \right)=-\left( \dfrac{627}{725} \right)\].
Hence, the correct option is b) \[-\left( \dfrac{627}{725} \right)\]
Note: We must know the relation between the roots of the equation and the coefficients of the variable in a quadratic equation to solve this question. There are three half angle formulae of cosine:
$\cos x = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = 1 - 2{\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}$
We can use all these formulae according to the conditions given in the question.
Formula Used:
i) \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\]
ii) \[\cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}\]
Complete step by step solution:
Given \[\tan \left( \dfrac{\alpha }{2} \right)\] and \[\tan \left( \dfrac{\beta }{2} \right)\] are the roots of \[8{{x}^{2}}-26x+15=0\], where, \[a=8,b=-26\] and \[c=15\] then we have
\[\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)=-\left( \dfrac{-26}{8} \right)=\dfrac{26}{8}\,\,\,......(1)\] and
\[\tan \left( \dfrac{\alpha }{2} \right)\times \tan \left( \dfrac{\beta }{2} \right)=\dfrac{15}{8}\,\,\,\,......(2)\]
We know that \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\],
Then, we have
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\tan \left( \dfrac{\alpha }{2} \right)+\tan \left( \dfrac{\beta }{2} \right)}{1-\tan \left( \dfrac{\alpha }{2} \right)\tan \left( \dfrac{\beta }{2} \right)}\]
Using equation (1) and (2) we have,
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\left( \dfrac{26}{8} \right)}{\left( 1-\left( \dfrac{15}{8} \right) \right)}\]
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\left( \dfrac{26}{8} \right)}{\left( \dfrac{8-15}{8} \right)}\]
\[\Rightarrow \tan \left( \dfrac{\alpha }{2}+\dfrac{\beta }{2} \right)=\dfrac{\left( \dfrac{26}{8} \right)}{\left( \dfrac{-7}{8} \right)}\]
Simplifying we have,
\[\Rightarrow \tan \left( \dfrac{\alpha +\beta }{2} \right)=-\dfrac{26}{7}\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 3 \right)\]
Now we also know that \[\cos 2A=\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}\]
Then,
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{1-{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}\]
Using equation (3) we know that,
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{\left( 1-{{\left( -\dfrac{26}{7} \right)}^{2}} \right)}{\left( 1+{{\left( -\dfrac{26}{7} \right)}^{2}} \right)}\]
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{\left( 1-\dfrac{676}{49} \right)}{\left( 1+\dfrac{676}{49} \right)}\]
Taking LCM and simplifying we have
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{\left( \dfrac{49-676}{49} \right)}{\left( \dfrac{49+676}{49} \right)}\]
\[\Rightarrow \cos \left( \alpha +\beta \right)=\dfrac{-627}{725}\]
Or
\[\Rightarrow \cos \left( \alpha +\beta \right)=-\left( \dfrac{627}{725} \right)\].
Hence, the correct option is b) \[-\left( \dfrac{627}{725} \right)\]
Note: We must know the relation between the roots of the equation and the coefficients of the variable in a quadratic equation to solve this question. There are three half angle formulae of cosine:
$\cos x = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = 1 - 2{\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}$
We can use all these formulae according to the conditions given in the question.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
