
If \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\]. Then prove that \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Answer
164.1k+ views
Hint: First using the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] calculate the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\]. Then rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\] and simplify it using the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]. After that, solve the left-hand side of the required equation by using the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] and the value of \[\cos\left( {\alpha - \beta } \right)\] to prove the required answer.
Formula used:
\[\sin^{2}A + \cos^{2}A = 1\]
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos 2A = 2\cos^{2}A - 1\]
Complete step by step solution:
The given equations are \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\].
To Prove: \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\]
Let’s find out the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\].
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[\cos^{2}\left( {\theta + \alpha } \right) = 1 – \sin^{2}\left( {\theta + \alpha } \right)\]
\[ \Rightarrow \cos^{2}\left( {\theta + \alpha } \right) = 1 - {a^2}\]
Take square root on both sides.
\[\cos\left( {\theta + \alpha } \right) = \sqrt {1 - {a^2}} \]
Similarly, for \[\cos\left( {\theta + \beta } \right)\] we get
\[\cos\left( {\theta + \beta } \right) = \sqrt {1 - {b^2}} \]
Now calculate the value of \[\cos\left( {\alpha - \beta } \right)\].
Rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
\[\cos\left( {\alpha - \beta } \right) = \cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
Apply the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[\cos\left( {\alpha - \beta } \right) = \cos\left( {\theta + \alpha } \right)\cos\left( {\theta + \beta } \right) + \sin\left( {\theta + \alpha } \right)\sin\left( {\theta + \beta } \right)\]
Substitute the values in the above equation.
\[\cos\left( {\alpha - \beta } \right) = \left( {\sqrt {1 - {a^2}} } \right)\left( {\sqrt {1 - {b^2}} } \right) + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {\left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right)} + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab\]
Now solve the left-hand side of the given equation \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Let consider,
\[LHS = \cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right)\]
Apply the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] in the above equation.
\[LHS = \left[ {2\cos^{2}\left( {\alpha - \beta } \right) - 1} \right] - 4ab \cos\left( {\alpha - \beta } \right)\]
Substitute the value of \[\cos\left( {\alpha - \beta } \right)\] in the above equation.
\[LHS = \left[ {2{{\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)}^2} - 1} \right] - 4ab\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)\]
Apply the formula of the square of the sum \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow LHS = \left[ {2\left( {\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + {a^2}{b^2} + 2ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} } \right) - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
\[ \Rightarrow LHS = \left[ {2\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + 2{a^2}{b^2} + 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
Cancel out the common terms with opposite sides.
\[LHS = \left[ {2 - 2{a^2} - 2{b^2} + 2{a^2}{b^2} - 1} \right] - 2{a^2}{b^2}\]
\[ \Rightarrow LHS = 1 - 2{a^2} - 2{b^2}\]
\[ \Rightarrow LHS = RHS\]
Hence, proved.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angels for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Formula used:
\[\sin^{2}A + \cos^{2}A = 1\]
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos 2A = 2\cos^{2}A - 1\]
Complete step by step solution:
The given equations are \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\].
To Prove: \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\]
Let’s find out the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\].
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[\cos^{2}\left( {\theta + \alpha } \right) = 1 – \sin^{2}\left( {\theta + \alpha } \right)\]
\[ \Rightarrow \cos^{2}\left( {\theta + \alpha } \right) = 1 - {a^2}\]
Take square root on both sides.
\[\cos\left( {\theta + \alpha } \right) = \sqrt {1 - {a^2}} \]
Similarly, for \[\cos\left( {\theta + \beta } \right)\] we get
\[\cos\left( {\theta + \beta } \right) = \sqrt {1 - {b^2}} \]
Now calculate the value of \[\cos\left( {\alpha - \beta } \right)\].
Rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
\[\cos\left( {\alpha - \beta } \right) = \cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
Apply the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[\cos\left( {\alpha - \beta } \right) = \cos\left( {\theta + \alpha } \right)\cos\left( {\theta + \beta } \right) + \sin\left( {\theta + \alpha } \right)\sin\left( {\theta + \beta } \right)\]
Substitute the values in the above equation.
\[\cos\left( {\alpha - \beta } \right) = \left( {\sqrt {1 - {a^2}} } \right)\left( {\sqrt {1 - {b^2}} } \right) + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {\left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right)} + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab\]
Now solve the left-hand side of the given equation \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Let consider,
\[LHS = \cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right)\]
Apply the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] in the above equation.
\[LHS = \left[ {2\cos^{2}\left( {\alpha - \beta } \right) - 1} \right] - 4ab \cos\left( {\alpha - \beta } \right)\]
Substitute the value of \[\cos\left( {\alpha - \beta } \right)\] in the above equation.
\[LHS = \left[ {2{{\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)}^2} - 1} \right] - 4ab\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)\]
Apply the formula of the square of the sum \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow LHS = \left[ {2\left( {\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + {a^2}{b^2} + 2ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} } \right) - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
\[ \Rightarrow LHS = \left[ {2\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + 2{a^2}{b^2} + 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
Cancel out the common terms with opposite sides.
\[LHS = \left[ {2 - 2{a^2} - 2{b^2} + 2{a^2}{b^2} - 1} \right] - 2{a^2}{b^2}\]
\[ \Rightarrow LHS = 1 - 2{a^2} - 2{b^2}\]
\[ \Rightarrow LHS = RHS\]
Hence, proved.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angels for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
