
If \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\]. Then prove that \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Answer
232.8k+ views
Hint: First using the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] calculate the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\]. Then rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\] and simplify it using the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]. After that, solve the left-hand side of the required equation by using the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] and the value of \[\cos\left( {\alpha - \beta } \right)\] to prove the required answer.
Formula used:
\[\sin^{2}A + \cos^{2}A = 1\]
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos 2A = 2\cos^{2}A - 1\]
Complete step by step solution:
The given equations are \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\].
To Prove: \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\]
Let’s find out the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\].
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[\cos^{2}\left( {\theta + \alpha } \right) = 1 – \sin^{2}\left( {\theta + \alpha } \right)\]
\[ \Rightarrow \cos^{2}\left( {\theta + \alpha } \right) = 1 - {a^2}\]
Take square root on both sides.
\[\cos\left( {\theta + \alpha } \right) = \sqrt {1 - {a^2}} \]
Similarly, for \[\cos\left( {\theta + \beta } \right)\] we get
\[\cos\left( {\theta + \beta } \right) = \sqrt {1 - {b^2}} \]
Now calculate the value of \[\cos\left( {\alpha - \beta } \right)\].
Rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
\[\cos\left( {\alpha - \beta } \right) = \cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
Apply the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[\cos\left( {\alpha - \beta } \right) = \cos\left( {\theta + \alpha } \right)\cos\left( {\theta + \beta } \right) + \sin\left( {\theta + \alpha } \right)\sin\left( {\theta + \beta } \right)\]
Substitute the values in the above equation.
\[\cos\left( {\alpha - \beta } \right) = \left( {\sqrt {1 - {a^2}} } \right)\left( {\sqrt {1 - {b^2}} } \right) + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {\left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right)} + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab\]
Now solve the left-hand side of the given equation \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Let consider,
\[LHS = \cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right)\]
Apply the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] in the above equation.
\[LHS = \left[ {2\cos^{2}\left( {\alpha - \beta } \right) - 1} \right] - 4ab \cos\left( {\alpha - \beta } \right)\]
Substitute the value of \[\cos\left( {\alpha - \beta } \right)\] in the above equation.
\[LHS = \left[ {2{{\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)}^2} - 1} \right] - 4ab\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)\]
Apply the formula of the square of the sum \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow LHS = \left[ {2\left( {\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + {a^2}{b^2} + 2ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} } \right) - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
\[ \Rightarrow LHS = \left[ {2\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + 2{a^2}{b^2} + 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
Cancel out the common terms with opposite sides.
\[LHS = \left[ {2 - 2{a^2} - 2{b^2} + 2{a^2}{b^2} - 1} \right] - 2{a^2}{b^2}\]
\[ \Rightarrow LHS = 1 - 2{a^2} - 2{b^2}\]
\[ \Rightarrow LHS = RHS\]
Hence, proved.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angels for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Formula used:
\[\sin^{2}A + \cos^{2}A = 1\]
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos 2A = 2\cos^{2}A - 1\]
Complete step by step solution:
The given equations are \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\].
To Prove: \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\]
Let’s find out the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\].
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[\cos^{2}\left( {\theta + \alpha } \right) = 1 – \sin^{2}\left( {\theta + \alpha } \right)\]
\[ \Rightarrow \cos^{2}\left( {\theta + \alpha } \right) = 1 - {a^2}\]
Take square root on both sides.
\[\cos\left( {\theta + \alpha } \right) = \sqrt {1 - {a^2}} \]
Similarly, for \[\cos\left( {\theta + \beta } \right)\] we get
\[\cos\left( {\theta + \beta } \right) = \sqrt {1 - {b^2}} \]
Now calculate the value of \[\cos\left( {\alpha - \beta } \right)\].
Rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
\[\cos\left( {\alpha - \beta } \right) = \cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
Apply the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[\cos\left( {\alpha - \beta } \right) = \cos\left( {\theta + \alpha } \right)\cos\left( {\theta + \beta } \right) + \sin\left( {\theta + \alpha } \right)\sin\left( {\theta + \beta } \right)\]
Substitute the values in the above equation.
\[\cos\left( {\alpha - \beta } \right) = \left( {\sqrt {1 - {a^2}} } \right)\left( {\sqrt {1 - {b^2}} } \right) + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {\left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right)} + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab\]
Now solve the left-hand side of the given equation \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Let consider,
\[LHS = \cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right)\]
Apply the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] in the above equation.
\[LHS = \left[ {2\cos^{2}\left( {\alpha - \beta } \right) - 1} \right] - 4ab \cos\left( {\alpha - \beta } \right)\]
Substitute the value of \[\cos\left( {\alpha - \beta } \right)\] in the above equation.
\[LHS = \left[ {2{{\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)}^2} - 1} \right] - 4ab\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)\]
Apply the formula of the square of the sum \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow LHS = \left[ {2\left( {\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + {a^2}{b^2} + 2ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} } \right) - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
\[ \Rightarrow LHS = \left[ {2\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + 2{a^2}{b^2} + 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
Cancel out the common terms with opposite sides.
\[LHS = \left[ {2 - 2{a^2} - 2{b^2} + 2{a^2}{b^2} - 1} \right] - 2{a^2}{b^2}\]
\[ \Rightarrow LHS = 1 - 2{a^2} - 2{b^2}\]
\[ \Rightarrow LHS = RHS\]
Hence, proved.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angels for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

