
If \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\]. Then prove that \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Answer
217.5k+ views
Hint: First using the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] calculate the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\]. Then rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\] and simplify it using the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]. After that, solve the left-hand side of the required equation by using the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] and the value of \[\cos\left( {\alpha - \beta } \right)\] to prove the required answer.
Formula used:
\[\sin^{2}A + \cos^{2}A = 1\]
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos 2A = 2\cos^{2}A - 1\]
Complete step by step solution:
The given equations are \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\].
To Prove: \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\]
Let’s find out the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\].
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[\cos^{2}\left( {\theta + \alpha } \right) = 1 – \sin^{2}\left( {\theta + \alpha } \right)\]
\[ \Rightarrow \cos^{2}\left( {\theta + \alpha } \right) = 1 - {a^2}\]
Take square root on both sides.
\[\cos\left( {\theta + \alpha } \right) = \sqrt {1 - {a^2}} \]
Similarly, for \[\cos\left( {\theta + \beta } \right)\] we get
\[\cos\left( {\theta + \beta } \right) = \sqrt {1 - {b^2}} \]
Now calculate the value of \[\cos\left( {\alpha - \beta } \right)\].
Rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
\[\cos\left( {\alpha - \beta } \right) = \cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
Apply the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[\cos\left( {\alpha - \beta } \right) = \cos\left( {\theta + \alpha } \right)\cos\left( {\theta + \beta } \right) + \sin\left( {\theta + \alpha } \right)\sin\left( {\theta + \beta } \right)\]
Substitute the values in the above equation.
\[\cos\left( {\alpha - \beta } \right) = \left( {\sqrt {1 - {a^2}} } \right)\left( {\sqrt {1 - {b^2}} } \right) + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {\left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right)} + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab\]
Now solve the left-hand side of the given equation \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Let consider,
\[LHS = \cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right)\]
Apply the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] in the above equation.
\[LHS = \left[ {2\cos^{2}\left( {\alpha - \beta } \right) - 1} \right] - 4ab \cos\left( {\alpha - \beta } \right)\]
Substitute the value of \[\cos\left( {\alpha - \beta } \right)\] in the above equation.
\[LHS = \left[ {2{{\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)}^2} - 1} \right] - 4ab\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)\]
Apply the formula of the square of the sum \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow LHS = \left[ {2\left( {\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + {a^2}{b^2} + 2ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} } \right) - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
\[ \Rightarrow LHS = \left[ {2\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + 2{a^2}{b^2} + 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
Cancel out the common terms with opposite sides.
\[LHS = \left[ {2 - 2{a^2} - 2{b^2} + 2{a^2}{b^2} - 1} \right] - 2{a^2}{b^2}\]
\[ \Rightarrow LHS = 1 - 2{a^2} - 2{b^2}\]
\[ \Rightarrow LHS = RHS\]
Hence, proved.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angels for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Formula used:
\[\sin^{2}A + \cos^{2}A = 1\]
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos 2A = 2\cos^{2}A - 1\]
Complete step by step solution:
The given equations are \[\sin\left( {\theta + \alpha } \right) = a\], and \[\sin\left( {\theta + \beta } \right) = b\].
To Prove: \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\]
Let’s find out the values of \[\cos\left( {\theta + \alpha } \right)\], and \[\cos\left( {\theta + \beta } \right)\].
Apply the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\].
We get,
\[\cos^{2}\left( {\theta + \alpha } \right) = 1 – \sin^{2}\left( {\theta + \alpha } \right)\]
\[ \Rightarrow \cos^{2}\left( {\theta + \alpha } \right) = 1 - {a^2}\]
Take square root on both sides.
\[\cos\left( {\theta + \alpha } \right) = \sqrt {1 - {a^2}} \]
Similarly, for \[\cos\left( {\theta + \beta } \right)\] we get
\[\cos\left( {\theta + \beta } \right) = \sqrt {1 - {b^2}} \]
Now calculate the value of \[\cos\left( {\alpha - \beta } \right)\].
Rewrite the angle \[\cos\left( {\alpha - \beta } \right)\] as \[\cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
\[\cos\left( {\alpha - \beta } \right) = \cos\left[ {\left( {\theta + \alpha } \right) - \left( {\theta + \beta } \right)} \right]\]
Apply the trigonometric identity \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[\cos\left( {\alpha - \beta } \right) = \cos\left( {\theta + \alpha } \right)\cos\left( {\theta + \beta } \right) + \sin\left( {\theta + \alpha } \right)\sin\left( {\theta + \beta } \right)\]
Substitute the values in the above equation.
\[\cos\left( {\alpha - \beta } \right) = \left( {\sqrt {1 - {a^2}} } \right)\left( {\sqrt {1 - {b^2}} } \right) + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {\left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right)} + ab\]
\[ \Rightarrow \cos\left( {\alpha - \beta } \right) = \sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab\]
Now solve the left-hand side of the given equation \[\cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right) = 1 - 2{a^2} - 2{b^2}\].
Let consider,
\[LHS = \cos 2\left( {\alpha - \beta } \right) - 4ab \cos\left( {\alpha - \beta } \right)\]
Apply the trigonometric formula \[\cos 2A = 2\cos^{2}A - 1\] in the above equation.
\[LHS = \left[ {2\cos^{2}\left( {\alpha - \beta } \right) - 1} \right] - 4ab \cos\left( {\alpha - \beta } \right)\]
Substitute the value of \[\cos\left( {\alpha - \beta } \right)\] in the above equation.
\[LHS = \left[ {2{{\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)}^2} - 1} \right] - 4ab\left( {\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} + ab} \right)\]
Apply the formula of the square of the sum \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow LHS = \left[ {2\left( {\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + {a^2}{b^2} + 2ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} } \right) - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
\[ \Rightarrow LHS = \left[ {2\left( {1 - {a^2} - {b^2} + {a^2}{b^2}} \right) + 2{a^2}{b^2} + 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 1} \right] - 4ab\sqrt {1 - {a^2} - {b^2} + {a^2}{b^2}} - 4{a^2}{b^2}\]
Cancel out the common terms with opposite sides.
\[LHS = \left[ {2 - 2{a^2} - 2{b^2} + 2{a^2}{b^2} - 1} \right] - 2{a^2}{b^2}\]
\[ \Rightarrow LHS = 1 - 2{a^2} - 2{b^2}\]
\[ \Rightarrow LHS = RHS\]
Hence, proved.
Note: While solving any trigonometric equation with double angles and exponent convert the equation into the basic trigonometric ratios by using the trigonometric identities.
Students often get confused about the formulas of the sum and difference of angels for a cosine function.
The formulas are as follows:
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
\[\cos\left( {A + B} \right) = \cos A \cos B - \sin A \sin B\]
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

