
If $\;\sin \theta ,\;1,\cos 2\theta $ are in G.P., then $\theta $ is equal to $(n \in Z)$ ?
A. $n\pi + {( - 1)^n}\dfrac{\pi }{2}$
B. $n\pi + {( - 1)^{n - 1}}\dfrac{\pi }{2}$
C. $2n\pi $
D. None of these
Answer
232.8k+ views
Hint: In this problem, first we will compute the geometric mean of the progression given, which results in a trigonometric cubic equation. Then, we will deduce the equation into quadratic form and find the roots of the equation formulated by geometric mean previously, which will give the ultimate value of $\theta $ .
Formula used:
The formula used in this problem is: -
The geometric mean (G.M.) of G.P. $a,b,c........$ which is calculated as: ${b^2} = ac$.
Complete Step by Step Solution:
G.P. (given) = $\;\sin \theta ,\;1,\cos 2\theta \ldots \ldots .\;\;\;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\;\; \ldots \left( 1 \right)$
We know that, for a G.P. $a,b,c........$ , the geometric mean (G.M.) is calculated as: ${b^2} = ac$
Hence, from $\left( 1 \right)$ , we get
$\sin \theta .\cos 2\theta = {(1)^2}$
Also, we have, $\cos 2\theta = 1 - 2{\sin ^2}\theta $
$ \Rightarrow \sin \theta (1 - 2{\sin ^2}\theta ) = 1$
$ \Rightarrow 2{\sin ^3}\theta - \sin \theta + 1 = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \left( 2 \right)$
To factorize the above cubic polynomial we have to first find one rational zero of this equation that is one value of \[\sin \theta \] for which the value of the equation is zero.
At \[\sin \theta =-1\]the equation will be zero. So the first root of the equation will be \[(1+\sin \theta )\].
We will now divide the whole polynomial $(2{\sin ^3}\theta - \sin \theta + 1) = 0$ by the root \[(1+\sin \theta )\] to reduce the polynomial into quadratic equation.
$\frac{2{{\sin }^{3}}\theta -\sin \theta +1}{1+\sin \theta }=2{{\sin }^{2}}\theta -2\sin \theta +1$
So,
$ \Rightarrow (1 + \sin \theta )(2{\sin ^2}\theta - 2\sin \theta + 1) = 0$
i.e., $(1 + \sin \theta ) = 0$ or $(2{\sin ^2}\theta - 2\sin \theta + 1) = 0$
But, $(2{\sin ^2}\theta - 2\sin \theta + 1)$ cannot be equal to zero as the discriminant value for this is negative. Therefore, $(2{\sin ^2}\theta - 2\sin \theta + 1) > 0$ always.
Now, Taking the case when $(1 + \sin \theta ) = 0$
$ \Rightarrow \sin \theta = - 1$
Or, we can write it as: $\sin \theta = \sin ( - \dfrac{\pi }{2})$
$ \Rightarrow \theta = n\pi + {( - 1)^n}\left( { - \dfrac{\pi }{2}} \right)$
$ \Rightarrow \theta = n\pi + {( - 1)^{n + 1}}\dfrac{\pi }{2} = n\pi + {( - 1)^{n - 1}}\dfrac{\pi }{2}$
Thus, the value of $\theta $ for the given G.P. is $n\pi + {( - 1)^{n - 1}}\dfrac{\pi }{2}$
Hence, the correct option is (B) $n\pi + {( - 1)^{n - 1}}\dfrac{\pi }{2}$
Note: Since the problem is based on geometric progression which includes trigonometric terms hence, it is essential to analyze the question very carefully, and apply the required identities to solve the question. The calculation part must be performed precisely, especially for obtaining the general solution of $\sin \theta = - 1$.
Formula used:
The formula used in this problem is: -
The geometric mean (G.M.) of G.P. $a,b,c........$ which is calculated as: ${b^2} = ac$.
Complete Step by Step Solution:
G.P. (given) = $\;\sin \theta ,\;1,\cos 2\theta \ldots \ldots .\;\;\;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\;\;\;\; \ldots \left( 1 \right)$
We know that, for a G.P. $a,b,c........$ , the geometric mean (G.M.) is calculated as: ${b^2} = ac$
Hence, from $\left( 1 \right)$ , we get
$\sin \theta .\cos 2\theta = {(1)^2}$
Also, we have, $\cos 2\theta = 1 - 2{\sin ^2}\theta $
$ \Rightarrow \sin \theta (1 - 2{\sin ^2}\theta ) = 1$
$ \Rightarrow 2{\sin ^3}\theta - \sin \theta + 1 = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ldots \left( 2 \right)$
To factorize the above cubic polynomial we have to first find one rational zero of this equation that is one value of \[\sin \theta \] for which the value of the equation is zero.
At \[\sin \theta =-1\]the equation will be zero. So the first root of the equation will be \[(1+\sin \theta )\].
We will now divide the whole polynomial $(2{\sin ^3}\theta - \sin \theta + 1) = 0$ by the root \[(1+\sin \theta )\] to reduce the polynomial into quadratic equation.
$\frac{2{{\sin }^{3}}\theta -\sin \theta +1}{1+\sin \theta }=2{{\sin }^{2}}\theta -2\sin \theta +1$
So,
$ \Rightarrow (1 + \sin \theta )(2{\sin ^2}\theta - 2\sin \theta + 1) = 0$
i.e., $(1 + \sin \theta ) = 0$ or $(2{\sin ^2}\theta - 2\sin \theta + 1) = 0$
But, $(2{\sin ^2}\theta - 2\sin \theta + 1)$ cannot be equal to zero as the discriminant value for this is negative. Therefore, $(2{\sin ^2}\theta - 2\sin \theta + 1) > 0$ always.
Now, Taking the case when $(1 + \sin \theta ) = 0$
$ \Rightarrow \sin \theta = - 1$
Or, we can write it as: $\sin \theta = \sin ( - \dfrac{\pi }{2})$
$ \Rightarrow \theta = n\pi + {( - 1)^n}\left( { - \dfrac{\pi }{2}} \right)$
$ \Rightarrow \theta = n\pi + {( - 1)^{n + 1}}\dfrac{\pi }{2} = n\pi + {( - 1)^{n - 1}}\dfrac{\pi }{2}$
Thus, the value of $\theta $ for the given G.P. is $n\pi + {( - 1)^{n - 1}}\dfrac{\pi }{2}$
Hence, the correct option is (B) $n\pi + {( - 1)^{n - 1}}\dfrac{\pi }{2}$
Note: Since the problem is based on geometric progression which includes trigonometric terms hence, it is essential to analyze the question very carefully, and apply the required identities to solve the question. The calculation part must be performed precisely, especially for obtaining the general solution of $\sin \theta = - 1$.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

