
If \[\sin A = \sin B\] and $\cos A = \cos B,$ then
A. $\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
B. $\sin \left( {\dfrac{{A + B}}{2}} \right) = 0$
C. $\cos \left( {\dfrac{{A - B}}{2}} \right) = 0$
D. $\cos \left( {A + B} \right) = 0$
Answer
164.1k+ views
Hint: In order to solve this type of question, first we will simplify both the given equations using the suitable trigonometric identities. Then, we will consider another suitable trigonometric identity. Next, we will substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
