
If \[\sin A = \sin B\] and $\cos A = \cos B,$ then
A. $\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
B. $\sin \left( {\dfrac{{A + B}}{2}} \right) = 0$
C. $\cos \left( {\dfrac{{A - B}}{2}} \right) = 0$
D. $\cos \left( {A + B} \right) = 0$
Answer
232.8k+ views
Hint: In order to solve this type of question, first we will simplify both the given equations using the suitable trigonometric identities. Then, we will consider another suitable trigonometric identity. Next, we will substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

