
If \[\sin A = \sin B\] and $\cos A = \cos B,$ then
A. $\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
B. $\sin \left( {\dfrac{{A + B}}{2}} \right) = 0$
C. $\cos \left( {\dfrac{{A - B}}{2}} \right) = 0$
D. $\cos \left( {A + B} \right) = 0$
Answer
164.1k+ views
Hint: In order to solve this type of question, first we will simplify both the given equations using the suitable trigonometric identities. Then, we will consider another suitable trigonometric identity. Next, we will substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Raipur Cut-off of Previous Years and Expected for 2025

JEE Main Eligibility Criteria 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

JEE Advanced 2025 Notes

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
