
If \[\sin A = \sin B\] and $\cos A = \cos B,$ then
A. $\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
B. $\sin \left( {\dfrac{{A + B}}{2}} \right) = 0$
C. $\cos \left( {\dfrac{{A - B}}{2}} \right) = 0$
D. $\cos \left( {A + B} \right) = 0$
Answer
232.8k+ views
Hint: In order to solve this type of question, first we will simplify both the given equations using the suitable trigonometric identities. Then, we will consider another suitable trigonometric identity. Next, we will substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Formula used:
$\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
$\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Complete step by step solution:
We are given that,
\[\sin A = \sin B\] ………………..equation$\left( 1 \right)$
$\cos A = \cos B$ ………………..equation$\left( 2 \right)$
Simplifying equation$\left( 1 \right)$,
\[2\sin \dfrac{A}{2}\cos \dfrac{A}{2} = 2\sin \dfrac{B}{2}\cos \dfrac{B}{2}\] $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
\[\sin \dfrac{A}{2}\cos \dfrac{A}{2} = \sin \dfrac{B}{2}\cos \dfrac{B}{2}\] ………………..equation$\left( 3 \right)$
Simplifying equation$\left( 2 \right)$,
$2{\cos ^2}\dfrac{A}{2} - 1 = 2{\cos ^2}\dfrac{B}{2} - 1$ $\left[ {\because \cos 2\theta = 2{{\cos }^2}\theta - 1} \right]$
$\cos \dfrac{A}{2} = \cos \dfrac{B}{2}$ ………………..equation$\left( 4 \right)$
From equation $\left( 3 \right)$ and $\left( 4 \right)$ we get,
\[\sin \dfrac{A}{2} = \sin \dfrac{B}{2}\] ………………..equation$\left( 5 \right)$
Consider,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = \sin \dfrac{A}{2}\cos \dfrac{B}{2} - \cos \dfrac{A}{2}\sin \dfrac{B}{2}$
Using equation $\left( 4 \right)$ and $\left( 5 \right)$ in the above equation we get,
$\sin \left( {\dfrac{{A - B}}{2}} \right) = 0$
$\therefore $ The correct option is A.
Note: To solve this question one has to choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer. We should focus on options to choose our suitable identity for the simplification.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

