
If ${{\sin }^{2}}\theta =\dfrac{1}{4}$ then the most general value of $\theta $ is
A. \[2n\pi \pm {{(-1)}^{n}}\dfrac{\pi }{6}\]
B. \[\dfrac{n\pi }{2}\pm {{(-1)}^{n}}\dfrac{\pi }{6}\]
C. \[n\pi \pm \dfrac{\pi }{6}\]
D. \[2n\pi \pm \dfrac{\pi }{6}\]
Answer
218.7k+ views
Hint: To derive the general value of $\theta $ we will take the given equation and simplify it and derive the value of $\sin \theta $. After simplifying we will find the general equation for $\theta $ by defining $n$ using the trigonometric table of values for the function sine.
Formula Used: To derive the general value of $\theta $ we will take the given equation and simplify it and derive the value of $\sin \theta $. After simplifying we will find the general equation for $\theta $ by defining $n$ using the trigonometric table of values for the function sine.
Complete step by step solution:We are given ${{\sin }^{2}}\theta =\dfrac{1}{4}$ and we have to determine the general value of $\theta $.
We will take ${{\sin }^{2}}\theta =\dfrac{1}{4}$and derive the value of $\sin \theta $ by simplifying.
$\begin{align}
& {{\sin }^{2}}\theta =\dfrac{1}{4} \\
& \sin \theta =\sqrt{\dfrac{1}{4}} \\
& \sin \theta =\pm \dfrac{1}{2}
\end{align}$
Now we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2},\sin \dfrac{5\pi }{6}=\dfrac{1}{2}....$and so on. Hence we will take a variable for integer \[n\] such that \[n\in Z\].
Option ‘C’ is correct
Note: A trigonometric equation can be defined as an equation which has trigonometric functions present in them like sin, cos, tan, cot, sec, cosec. The values of these functions lies in some specific interval after that it starts repeating its value. The interval of the function sine is $0\le \theta \le 2\pi $.
If the value of the angle $\theta $ has a variable like $n\pi $in its solution, then that solution is called as general solution which gives the all the solution for that trigonometric function.
The general equation we derived for angle $\theta =n\pi \pm \dfrac{\pi }{6}$will give all the solutions for the trigonometric function sine by substituting the value of $n$.
The solution which will give the precise answer without any variable in it is called as principal solution.
We should remember that $\sin x=0$ means $x=n\pi $ where $n\in Z$.
Aside from the function sine, there are also the general equations for all the other trigonometric functions according to their period interval.
Formula Used: To derive the general value of $\theta $ we will take the given equation and simplify it and derive the value of $\sin \theta $. After simplifying we will find the general equation for $\theta $ by defining $n$ using the trigonometric table of values for the function sine.
Complete step by step solution:We are given ${{\sin }^{2}}\theta =\dfrac{1}{4}$ and we have to determine the general value of $\theta $.
We will take ${{\sin }^{2}}\theta =\dfrac{1}{4}$and derive the value of $\sin \theta $ by simplifying.
$\begin{align}
& {{\sin }^{2}}\theta =\dfrac{1}{4} \\
& \sin \theta =\sqrt{\dfrac{1}{4}} \\
& \sin \theta =\pm \dfrac{1}{2}
\end{align}$
Now we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2},\sin \dfrac{5\pi }{6}=\dfrac{1}{2}....$and so on. Hence we will take a variable for integer \[n\] such that \[n\in Z\].
Option ‘C’ is correct
Note: A trigonometric equation can be defined as an equation which has trigonometric functions present in them like sin, cos, tan, cot, sec, cosec. The values of these functions lies in some specific interval after that it starts repeating its value. The interval of the function sine is $0\le \theta \le 2\pi $.
If the value of the angle $\theta $ has a variable like $n\pi $in its solution, then that solution is called as general solution which gives the all the solution for that trigonometric function.
The general equation we derived for angle $\theta =n\pi \pm \dfrac{\pi }{6}$will give all the solutions for the trigonometric function sine by substituting the value of $n$.
The solution which will give the precise answer without any variable in it is called as principal solution.
We should remember that $\sin x=0$ means $x=n\pi $ where $n\in Z$.
Aside from the function sine, there are also the general equations for all the other trigonometric functions according to their period interval.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

