
If R and L represent the resistance and inductance respectively, then give the dimension of $\dfrac{L}{R}$ is:
A) \[{M^0}{L^0}{T^{ - 1}}\]
B) \[{M^0}{L^1}{T^0}\]
C) \[{M^0}{L^0}{T^1}\]
D) Cannot be represented in terms of $M,L$ and $T$
Answer
232.8k+ views
Hint: Although known that the time constant of an $L - R$ circuit is given by $\tau = \dfrac{L}{R}$, but before we use that approach, it is important to find the dimensions of the individual elements and combining them to find the dimension of $\dfrac{L}{R}.$
Formulae used:
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$.
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$.
$\tau = \dfrac{L}{R}$
Where $\tau $ is the time constant of an $L - R$ circuit, $R$ is the resistance of the circuit and $L$ is the inductance of the circuit.
Complete step by step solution:
To find the dimensions of inductance, we will first find an equation that equates inductance with a quantity whose dimensions are well known and easily calculated, that is,
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow L = \dfrac{{2E}}{{{i^2}}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
\[L = \dfrac{{M{\text{ }}L\;{T^ - }^2\;}}{{{A^2}}} = M{\text{ }}L\;{T^ - }^2\;{A^ - }^2\] $...\left( 1 \right)$
Similarly in the case of the resistance of the circuit
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow R = \dfrac{E}{{{i^2}t}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
$R = \dfrac{{ML{T^{ - 2}}}}{{{A^2}T}} = ML{T^{ - 3}}{A^{ - 2}}$
To find the dimensional formula of \[\dfrac{L}{R}\] we simply multiply the individual dimensions, that is,
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = \dfrac{{ML{T^ - }^2{A^ - }^2}}{{ML{T^{ - 3}}{A^{ - 2}}}}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = {M^0}{L^0}{T^1}{A^0}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = T$
Therefore, the dimension of \[\dfrac{L}{R}\] is dependent solely on time.
Alternatively:
Since the time constant, $\tau = \dfrac{L}{R}$, therefore you can tell that the dimensions of \[\dfrac{L}{R}\] will be similar to that of $\tau $ as dimensional equality is only possible if the dimensions of both quantities are equal.
Therefore the dimensions of \[\dfrac{L}{R}\] is $T$.
Note: Dimensional analysis questions usually have multiple approaches possible, depending entirely on the ease of your application and knowledge. Dimensions of a particular quantity can be solved in multiple ways by using the right formula to relate that quantity to those quantities whose dimensions you’re sure of. In this question, you could’ve further expanded the formula or Resistance and Inductance to get to the four basic units: mass $\left( M \right)$ , time $\left( T \right)$ , length $(L)$ and current $\left( A \right)$ .
Formulae used:
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$.
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$.
$\tau = \dfrac{L}{R}$
Where $\tau $ is the time constant of an $L - R$ circuit, $R$ is the resistance of the circuit and $L$ is the inductance of the circuit.
Complete step by step solution:
To find the dimensions of inductance, we will first find an equation that equates inductance with a quantity whose dimensions are well known and easily calculated, that is,
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow L = \dfrac{{2E}}{{{i^2}}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
\[L = \dfrac{{M{\text{ }}L\;{T^ - }^2\;}}{{{A^2}}} = M{\text{ }}L\;{T^ - }^2\;{A^ - }^2\] $...\left( 1 \right)$
Similarly in the case of the resistance of the circuit
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow R = \dfrac{E}{{{i^2}t}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
$R = \dfrac{{ML{T^{ - 2}}}}{{{A^2}T}} = ML{T^{ - 3}}{A^{ - 2}}$
To find the dimensional formula of \[\dfrac{L}{R}\] we simply multiply the individual dimensions, that is,
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = \dfrac{{ML{T^ - }^2{A^ - }^2}}{{ML{T^{ - 3}}{A^{ - 2}}}}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = {M^0}{L^0}{T^1}{A^0}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = T$
Therefore, the dimension of \[\dfrac{L}{R}\] is dependent solely on time.
Alternatively:
Since the time constant, $\tau = \dfrac{L}{R}$, therefore you can tell that the dimensions of \[\dfrac{L}{R}\] will be similar to that of $\tau $ as dimensional equality is only possible if the dimensions of both quantities are equal.
Therefore the dimensions of \[\dfrac{L}{R}\] is $T$.
Note: Dimensional analysis questions usually have multiple approaches possible, depending entirely on the ease of your application and knowledge. Dimensions of a particular quantity can be solved in multiple ways by using the right formula to relate that quantity to those quantities whose dimensions you’re sure of. In this question, you could’ve further expanded the formula or Resistance and Inductance to get to the four basic units: mass $\left( M \right)$ , time $\left( T \right)$ , length $(L)$ and current $\left( A \right)$ .
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

CBSE Class 12 Physics Set 2 (55/2/2) 2025 Question Paper & Solutions

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Units and Measurements Mock Test for JEE Main 2025-26 Preparation

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

