
If R and L represent the resistance and inductance respectively, then give the dimension of $\dfrac{L}{R}$ is:
A) \[{M^0}{L^0}{T^{ - 1}}\]
B) \[{M^0}{L^1}{T^0}\]
C) \[{M^0}{L^0}{T^1}\]
D) Cannot be represented in terms of $M,L$ and $T$
Answer
216.6k+ views
Hint: Although known that the time constant of an $L - R$ circuit is given by $\tau = \dfrac{L}{R}$, but before we use that approach, it is important to find the dimensions of the individual elements and combining them to find the dimension of $\dfrac{L}{R}.$
Formulae used:
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$.
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$.
$\tau = \dfrac{L}{R}$
Where $\tau $ is the time constant of an $L - R$ circuit, $R$ is the resistance of the circuit and $L$ is the inductance of the circuit.
Complete step by step solution:
To find the dimensions of inductance, we will first find an equation that equates inductance with a quantity whose dimensions are well known and easily calculated, that is,
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow L = \dfrac{{2E}}{{{i^2}}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
\[L = \dfrac{{M{\text{ }}L\;{T^ - }^2\;}}{{{A^2}}} = M{\text{ }}L\;{T^ - }^2\;{A^ - }^2\] $...\left( 1 \right)$
Similarly in the case of the resistance of the circuit
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow R = \dfrac{E}{{{i^2}t}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
$R = \dfrac{{ML{T^{ - 2}}}}{{{A^2}T}} = ML{T^{ - 3}}{A^{ - 2}}$
To find the dimensional formula of \[\dfrac{L}{R}\] we simply multiply the individual dimensions, that is,
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = \dfrac{{ML{T^ - }^2{A^ - }^2}}{{ML{T^{ - 3}}{A^{ - 2}}}}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = {M^0}{L^0}{T^1}{A^0}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = T$
Therefore, the dimension of \[\dfrac{L}{R}\] is dependent solely on time.
Alternatively:
Since the time constant, $\tau = \dfrac{L}{R}$, therefore you can tell that the dimensions of \[\dfrac{L}{R}\] will be similar to that of $\tau $ as dimensional equality is only possible if the dimensions of both quantities are equal.
Therefore the dimensions of \[\dfrac{L}{R}\] is $T$.
Note: Dimensional analysis questions usually have multiple approaches possible, depending entirely on the ease of your application and knowledge. Dimensions of a particular quantity can be solved in multiple ways by using the right formula to relate that quantity to those quantities whose dimensions you’re sure of. In this question, you could’ve further expanded the formula or Resistance and Inductance to get to the four basic units: mass $\left( M \right)$ , time $\left( T \right)$ , length $(L)$ and current $\left( A \right)$ .
Formulae used:
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$.
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$.
$\tau = \dfrac{L}{R}$
Where $\tau $ is the time constant of an $L - R$ circuit, $R$ is the resistance of the circuit and $L$ is the inductance of the circuit.
Complete step by step solution:
To find the dimensions of inductance, we will first find an equation that equates inductance with a quantity whose dimensions are well known and easily calculated, that is,
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow L = \dfrac{{2E}}{{{i^2}}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
\[L = \dfrac{{M{\text{ }}L\;{T^ - }^2\;}}{{{A^2}}} = M{\text{ }}L\;{T^ - }^2\;{A^ - }^2\] $...\left( 1 \right)$
Similarly in the case of the resistance of the circuit
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow R = \dfrac{E}{{{i^2}t}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
$R = \dfrac{{ML{T^{ - 2}}}}{{{A^2}T}} = ML{T^{ - 3}}{A^{ - 2}}$
To find the dimensional formula of \[\dfrac{L}{R}\] we simply multiply the individual dimensions, that is,
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = \dfrac{{ML{T^ - }^2{A^ - }^2}}{{ML{T^{ - 3}}{A^{ - 2}}}}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = {M^0}{L^0}{T^1}{A^0}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = T$
Therefore, the dimension of \[\dfrac{L}{R}\] is dependent solely on time.
Alternatively:
Since the time constant, $\tau = \dfrac{L}{R}$, therefore you can tell that the dimensions of \[\dfrac{L}{R}\] will be similar to that of $\tau $ as dimensional equality is only possible if the dimensions of both quantities are equal.
Therefore the dimensions of \[\dfrac{L}{R}\] is $T$.
Note: Dimensional analysis questions usually have multiple approaches possible, depending entirely on the ease of your application and knowledge. Dimensions of a particular quantity can be solved in multiple ways by using the right formula to relate that quantity to those quantities whose dimensions you’re sure of. In this question, you could’ve further expanded the formula or Resistance and Inductance to get to the four basic units: mass $\left( M \right)$ , time $\left( T \right)$ , length $(L)$ and current $\left( A \right)$ .
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

