
If pressure and temperature of an ideal gas are doubled and volume is halved, the number of molecules of the gas
(A) Becomes half
(B) Becomes two times
(C) Becomes four times
(D) Remains constant
Answer
232.8k+ views
Hint Use the equation of ideal gas law. Use Boyle’s law equation to find the relation between pressure and volume. Apply the given conditions to the ideal gas law equation and find what happens to the n value.
Complete Step By Step Solution
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
Which means that
\[P \propto \dfrac{1}{V}\]
Where P is the pressure of the gas and V is the volume of the gas molecule
Now,
\[PV = C\] , where C defines a constant
\[PV = nRT\] , Where n is number of moles of gas molecules of fixed mass, R is gas constant and T is the temperature of the gas
Now in our case, it is given as Pressure of the ideal gas is doubled and Volume of the ideal gas is halved.
This means that
\[P = 2P\] and \[V = \dfrac{V}{2}\]
Applying this condition to the ideal gas equation given above, we get
\[2P \times \dfrac{V}{2} = nRT\]
It is also given that the temperature of the gas is doubled. Applying this to the above mentioned equation, we get,
\[P \times V = nRT \times 2\]
Taking n on one side, we get
\[n = \dfrac{{P \times V}}{{2 \times RT}}\]
From the above equation it is seen that, number of molecules or moles is halved , when the pressure and temperature are increased and volume is halved.
Thus , Option(A) is the right answer.
Note
The given question can also be solved by considering Charles law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Complete Step By Step Solution
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
Which means that
\[P \propto \dfrac{1}{V}\]
Where P is the pressure of the gas and V is the volume of the gas molecule
Now,
\[PV = C\] , where C defines a constant
\[PV = nRT\] , Where n is number of moles of gas molecules of fixed mass, R is gas constant and T is the temperature of the gas
Now in our case, it is given as Pressure of the ideal gas is doubled and Volume of the ideal gas is halved.
This means that
\[P = 2P\] and \[V = \dfrac{V}{2}\]
Applying this condition to the ideal gas equation given above, we get
\[2P \times \dfrac{V}{2} = nRT\]
It is also given that the temperature of the gas is doubled. Applying this to the above mentioned equation, we get,
\[P \times V = nRT \times 2\]
Taking n on one side, we get
\[n = \dfrac{{P \times V}}{{2 \times RT}}\]
From the above equation it is seen that, number of molecules or moles is halved , when the pressure and temperature are increased and volume is halved.
Thus , Option(A) is the right answer.
Note
The given question can also be solved by considering Charles law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

