
If pressure and temperature of an ideal gas are doubled and volume is halved, the number of molecules of the gas
(A) Becomes half
(B) Becomes two times
(C) Becomes four times
(D) Remains constant
Answer
144.9k+ views
Hint Use the equation of ideal gas law. Use Boyle’s law equation to find the relation between pressure and volume. Apply the given conditions to the ideal gas law equation and find what happens to the n value.
Complete Step By Step Solution
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
Which means that
\[P \propto \dfrac{1}{V}\]
Where P is the pressure of the gas and V is the volume of the gas molecule
Now,
\[PV = C\] , where C defines a constant
\[PV = nRT\] , Where n is number of moles of gas molecules of fixed mass, R is gas constant and T is the temperature of the gas
Now in our case, it is given as Pressure of the ideal gas is doubled and Volume of the ideal gas is halved.
This means that
\[P = 2P\] and \[V = \dfrac{V}{2}\]
Applying this condition to the ideal gas equation given above, we get
\[2P \times \dfrac{V}{2} = nRT\]
It is also given that the temperature of the gas is doubled. Applying this to the above mentioned equation, we get,
\[P \times V = nRT \times 2\]
Taking n on one side, we get
\[n = \dfrac{{P \times V}}{{2 \times RT}}\]
From the above equation it is seen that, number of molecules or moles is halved , when the pressure and temperature are increased and volume is halved.
Thus , Option(A) is the right answer.
Note
The given question can also be solved by considering Charles law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Complete Step By Step Solution
We know the ideal gas law is obtained from Boyle's law. Boyle’s Law states that for a fixed mass of gas at a constant temperature, the volume of the gas is inversely proportional to the pressure of the gas.
Which means that
\[P \propto \dfrac{1}{V}\]
Where P is the pressure of the gas and V is the volume of the gas molecule
Now,
\[PV = C\] , where C defines a constant
\[PV = nRT\] , Where n is number of moles of gas molecules of fixed mass, R is gas constant and T is the temperature of the gas
Now in our case, it is given as Pressure of the ideal gas is doubled and Volume of the ideal gas is halved.
This means that
\[P = 2P\] and \[V = \dfrac{V}{2}\]
Applying this condition to the ideal gas equation given above, we get
\[2P \times \dfrac{V}{2} = nRT\]
It is also given that the temperature of the gas is doubled. Applying this to the above mentioned equation, we get,
\[P \times V = nRT \times 2\]
Taking n on one side, we get
\[n = \dfrac{{P \times V}}{{2 \times RT}}\]
From the above equation it is seen that, number of molecules or moles is halved , when the pressure and temperature are increased and volume is halved.
Thus , Option(A) is the right answer.
Note
The given question can also be solved by considering Charles law, which states that for a fixed mass at constant pressure on the gas, the volume of the gas is directly proportional to the temperature of the gas.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

At which height is gravity zero class 11 physics JEE_Main

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Physics In Hindi Chapter 1 Physical World

JEE Advanced Live Classes for 2025 By Vedantu

JEE Advanced Chemistry Notes 2025
