
If \[\overrightarrow {DA} = \overrightarrow a \] , \[\overrightarrow {AB} = \overrightarrow b \] and \[\overrightarrow {CB} = k\overrightarrow a \] , where, \[k > 0\] and \[X,Y\] are mid-points of \[\overrightarrow {DB} \] and \[\overrightarrow {AC} \] respectively such that \[\left| {\overrightarrow a } \right| = 17\] and \[\left| {\overrightarrow {XY} } \right| = 4\] , then \[k\] is equal to
A. \[\dfrac{8}{{17}}\]
B. \[\dfrac{9}{{17}}\]
C. \[\dfrac{{25}}{{17}}\]
D. \[\dfrac{4}{{17}}\]
Answer
233.1k+ views
Hint: Considering the point D as the origin, the position vectors of all other points A, B, C, X and Y will be found using the given data, Then, the magnitude of the vector \[\left| {\overrightarrow {XY} } \right|\] will be calculated in terms of \[k\] and will be equated to the given numerical value to find the value of \[k\] .
Formulae Used: If \[P,Q\] are two points, \[O\] is the origin and \[\overrightarrow p ,\overrightarrow q \] are the position vectors of \[P,Q\] respectively, then,
1. \[\overrightarrow {PQ} = \] Position vector of \[Q - \] Position vector of \[P\]
\[ \Rightarrow \overrightarrow {PQ} = \overrightarrow q - \overrightarrow p \]
2. The position vector of the midpoint of \[\overrightarrow {PQ} \] is \[\dfrac{1}{2}(\overrightarrow q - \overrightarrow p )\] .
Complete step-by-step solution:
We have been given that \[\overrightarrow {DA} = \overrightarrow a \] , \[\overrightarrow {AB} = \overrightarrow b \] and \[\overrightarrow {CB} = k\overrightarrow a \] .
Let us consider the point \[D\] as the origin and draw a figure with the given vectors as follows:

Image: Vector Diagram
Then the position vector of the point \[A = \overrightarrow {DA} = \overrightarrow a \] .
Applying the formula, we have
\[\overrightarrow {AB} = \] Position vector of \[B - \] Position vector of \[A\]
\[ \Rightarrow \overrightarrow b = \] Position vector of \[B - \overrightarrow a \] [Since \[\overrightarrow {AB} = \overrightarrow b \] ]
\[ \Rightarrow \] Position vector of \[B = \overrightarrow b + \overrightarrow a \]
Similarly,
\[\overrightarrow {CB} = \] Position vector of \[B - \] Position vector of \[C\]
\[ \Rightarrow k\overrightarrow a = \] \[(\overrightarrow b + \overrightarrow a ) - \] Position vector of \[C\] [Since \[\overrightarrow {CB} = k\overrightarrow a \] and Position vector of \[B = \overrightarrow b + \overrightarrow a \] ]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + \overrightarrow a - k\overrightarrow a \]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + (1 - k\overrightarrow {)a} \]
Given that \[X\] and \[Y\] are mid-points of \[\overrightarrow {DB} \] and \[\overrightarrow {AC} \] respectively.
So, the position vector of the point \[X = \dfrac{{\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DB} = \overrightarrow b + \overrightarrow a \] ]
And, the position vector of the point \[Y = \dfrac{{(2 - k)\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DC} = \overrightarrow b + (1 - k)\overrightarrow a \] and \[\overrightarrow {DA} = \overrightarrow a \]]
Now, \[\overrightarrow {XY} = \] Position vector of \[Y - \] Position vector of \[X\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(2 - k)\overrightarrow a }}{2} - \dfrac{{\overrightarrow b + \overrightarrow a }}{2}\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(1 - k)\overrightarrow a }}{2}\]
We will calculate the magnitude of \[\overrightarrow {XY} \] and equate it to the given numerical values to solve for \[k\]
So, \[\left| {\overrightarrow {XY} } \right| = \dfrac{{(1 - k)}}{2} \times \left| {\overrightarrow a } \right|\]
\[ \Rightarrow 4 = \dfrac{{(1 - k)}}{2} \times 17\] [Since \[\left| {\overrightarrow a } \right| = 17\] and \[\left| {\overrightarrow {XY} } \right| = 4\] ]
\[ \Rightarrow \dfrac{{17(1 - k)}}{2} = 4\]
\[ \Rightarrow 1 - k = 4 \times \dfrac{2}{{17}}\]
Further solving the above
\[1 - k = \dfrac{8}{{17}}\]
\[ \Rightarrow k = 1 - \dfrac{8}{{17}}\]
\[ \Rightarrow k = \dfrac{9}{{17}}\]
Thus, the value of \[k\] is equal to \[\dfrac{9}{{17}}\] .
Hence, option B. is the correct answer.
Note: If \[O\] is the origin, \[A,B\] are two points and \[\overrightarrow a ,\overrightarrow b \] are position vectors of \[A,B\] respectively, then, \[\overrightarrow {AB} = \overrightarrow b - \overrightarrow a \] and \[\overrightarrow {BA} = \overrightarrow a - \overrightarrow b \] . So, \[\overrightarrow {AB} = - \overrightarrow {BA} \] .
Formulae Used: If \[P,Q\] are two points, \[O\] is the origin and \[\overrightarrow p ,\overrightarrow q \] are the position vectors of \[P,Q\] respectively, then,
1. \[\overrightarrow {PQ} = \] Position vector of \[Q - \] Position vector of \[P\]
\[ \Rightarrow \overrightarrow {PQ} = \overrightarrow q - \overrightarrow p \]
2. The position vector of the midpoint of \[\overrightarrow {PQ} \] is \[\dfrac{1}{2}(\overrightarrow q - \overrightarrow p )\] .
Complete step-by-step solution:
We have been given that \[\overrightarrow {DA} = \overrightarrow a \] , \[\overrightarrow {AB} = \overrightarrow b \] and \[\overrightarrow {CB} = k\overrightarrow a \] .
Let us consider the point \[D\] as the origin and draw a figure with the given vectors as follows:

Image: Vector Diagram
Then the position vector of the point \[A = \overrightarrow {DA} = \overrightarrow a \] .
Applying the formula, we have
\[\overrightarrow {AB} = \] Position vector of \[B - \] Position vector of \[A\]
\[ \Rightarrow \overrightarrow b = \] Position vector of \[B - \overrightarrow a \] [Since \[\overrightarrow {AB} = \overrightarrow b \] ]
\[ \Rightarrow \] Position vector of \[B = \overrightarrow b + \overrightarrow a \]
Similarly,
\[\overrightarrow {CB} = \] Position vector of \[B - \] Position vector of \[C\]
\[ \Rightarrow k\overrightarrow a = \] \[(\overrightarrow b + \overrightarrow a ) - \] Position vector of \[C\] [Since \[\overrightarrow {CB} = k\overrightarrow a \] and Position vector of \[B = \overrightarrow b + \overrightarrow a \] ]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + \overrightarrow a - k\overrightarrow a \]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + (1 - k\overrightarrow {)a} \]
Given that \[X\] and \[Y\] are mid-points of \[\overrightarrow {DB} \] and \[\overrightarrow {AC} \] respectively.
So, the position vector of the point \[X = \dfrac{{\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DB} = \overrightarrow b + \overrightarrow a \] ]
And, the position vector of the point \[Y = \dfrac{{(2 - k)\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DC} = \overrightarrow b + (1 - k)\overrightarrow a \] and \[\overrightarrow {DA} = \overrightarrow a \]]
Now, \[\overrightarrow {XY} = \] Position vector of \[Y - \] Position vector of \[X\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(2 - k)\overrightarrow a }}{2} - \dfrac{{\overrightarrow b + \overrightarrow a }}{2}\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(1 - k)\overrightarrow a }}{2}\]
We will calculate the magnitude of \[\overrightarrow {XY} \] and equate it to the given numerical values to solve for \[k\]
So, \[\left| {\overrightarrow {XY} } \right| = \dfrac{{(1 - k)}}{2} \times \left| {\overrightarrow a } \right|\]
\[ \Rightarrow 4 = \dfrac{{(1 - k)}}{2} \times 17\] [Since \[\left| {\overrightarrow a } \right| = 17\] and \[\left| {\overrightarrow {XY} } \right| = 4\] ]
\[ \Rightarrow \dfrac{{17(1 - k)}}{2} = 4\]
\[ \Rightarrow 1 - k = 4 \times \dfrac{2}{{17}}\]
Further solving the above
\[1 - k = \dfrac{8}{{17}}\]
\[ \Rightarrow k = 1 - \dfrac{8}{{17}}\]
\[ \Rightarrow k = \dfrac{9}{{17}}\]
Thus, the value of \[k\] is equal to \[\dfrac{9}{{17}}\] .
Hence, option B. is the correct answer.
Note: If \[O\] is the origin, \[A,B\] are two points and \[\overrightarrow a ,\overrightarrow b \] are position vectors of \[A,B\] respectively, then, \[\overrightarrow {AB} = \overrightarrow b - \overrightarrow a \] and \[\overrightarrow {BA} = \overrightarrow a - \overrightarrow b \] . So, \[\overrightarrow {AB} = - \overrightarrow {BA} \] .
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

