
If \[\overrightarrow {DA} = \overrightarrow a \] , \[\overrightarrow {AB} = \overrightarrow b \] and \[\overrightarrow {CB} = k\overrightarrow a \] , where, \[k > 0\] and \[X,Y\] are mid-points of \[\overrightarrow {DB} \] and \[\overrightarrow {AC} \] respectively such that \[\left| {\overrightarrow a } \right| = 17\] and \[\left| {\overrightarrow {XY} } \right| = 4\] , then \[k\] is equal to
A. \[\dfrac{8}{{17}}\]
B. \[\dfrac{9}{{17}}\]
C. \[\dfrac{{25}}{{17}}\]
D. \[\dfrac{4}{{17}}\]
Answer
161.1k+ views
Hint: Considering the point D as the origin, the position vectors of all other points A, B, C, X and Y will be found using the given data, Then, the magnitude of the vector \[\left| {\overrightarrow {XY} } \right|\] will be calculated in terms of \[k\] and will be equated to the given numerical value to find the value of \[k\] .
Formulae Used: If \[P,Q\] are two points, \[O\] is the origin and \[\overrightarrow p ,\overrightarrow q \] are the position vectors of \[P,Q\] respectively, then,
1. \[\overrightarrow {PQ} = \] Position vector of \[Q - \] Position vector of \[P\]
\[ \Rightarrow \overrightarrow {PQ} = \overrightarrow q - \overrightarrow p \]
2. The position vector of the midpoint of \[\overrightarrow {PQ} \] is \[\dfrac{1}{2}(\overrightarrow q - \overrightarrow p )\] .
Complete step-by-step solution:
We have been given that \[\overrightarrow {DA} = \overrightarrow a \] , \[\overrightarrow {AB} = \overrightarrow b \] and \[\overrightarrow {CB} = k\overrightarrow a \] .
Let us consider the point \[D\] as the origin and draw a figure with the given vectors as follows:

Image: Vector Diagram
Then the position vector of the point \[A = \overrightarrow {DA} = \overrightarrow a \] .
Applying the formula, we have
\[\overrightarrow {AB} = \] Position vector of \[B - \] Position vector of \[A\]
\[ \Rightarrow \overrightarrow b = \] Position vector of \[B - \overrightarrow a \] [Since \[\overrightarrow {AB} = \overrightarrow b \] ]
\[ \Rightarrow \] Position vector of \[B = \overrightarrow b + \overrightarrow a \]
Similarly,
\[\overrightarrow {CB} = \] Position vector of \[B - \] Position vector of \[C\]
\[ \Rightarrow k\overrightarrow a = \] \[(\overrightarrow b + \overrightarrow a ) - \] Position vector of \[C\] [Since \[\overrightarrow {CB} = k\overrightarrow a \] and Position vector of \[B = \overrightarrow b + \overrightarrow a \] ]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + \overrightarrow a - k\overrightarrow a \]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + (1 - k\overrightarrow {)a} \]
Given that \[X\] and \[Y\] are mid-points of \[\overrightarrow {DB} \] and \[\overrightarrow {AC} \] respectively.
So, the position vector of the point \[X = \dfrac{{\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DB} = \overrightarrow b + \overrightarrow a \] ]
And, the position vector of the point \[Y = \dfrac{{(2 - k)\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DC} = \overrightarrow b + (1 - k)\overrightarrow a \] and \[\overrightarrow {DA} = \overrightarrow a \]]
Now, \[\overrightarrow {XY} = \] Position vector of \[Y - \] Position vector of \[X\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(2 - k)\overrightarrow a }}{2} - \dfrac{{\overrightarrow b + \overrightarrow a }}{2}\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(1 - k)\overrightarrow a }}{2}\]
We will calculate the magnitude of \[\overrightarrow {XY} \] and equate it to the given numerical values to solve for \[k\]
So, \[\left| {\overrightarrow {XY} } \right| = \dfrac{{(1 - k)}}{2} \times \left| {\overrightarrow a } \right|\]
\[ \Rightarrow 4 = \dfrac{{(1 - k)}}{2} \times 17\] [Since \[\left| {\overrightarrow a } \right| = 17\] and \[\left| {\overrightarrow {XY} } \right| = 4\] ]
\[ \Rightarrow \dfrac{{17(1 - k)}}{2} = 4\]
\[ \Rightarrow 1 - k = 4 \times \dfrac{2}{{17}}\]
Further solving the above
\[1 - k = \dfrac{8}{{17}}\]
\[ \Rightarrow k = 1 - \dfrac{8}{{17}}\]
\[ \Rightarrow k = \dfrac{9}{{17}}\]
Thus, the value of \[k\] is equal to \[\dfrac{9}{{17}}\] .
Hence, option B. is the correct answer.
Note: If \[O\] is the origin, \[A,B\] are two points and \[\overrightarrow a ,\overrightarrow b \] are position vectors of \[A,B\] respectively, then, \[\overrightarrow {AB} = \overrightarrow b - \overrightarrow a \] and \[\overrightarrow {BA} = \overrightarrow a - \overrightarrow b \] . So, \[\overrightarrow {AB} = - \overrightarrow {BA} \] .
Formulae Used: If \[P,Q\] are two points, \[O\] is the origin and \[\overrightarrow p ,\overrightarrow q \] are the position vectors of \[P,Q\] respectively, then,
1. \[\overrightarrow {PQ} = \] Position vector of \[Q - \] Position vector of \[P\]
\[ \Rightarrow \overrightarrow {PQ} = \overrightarrow q - \overrightarrow p \]
2. The position vector of the midpoint of \[\overrightarrow {PQ} \] is \[\dfrac{1}{2}(\overrightarrow q - \overrightarrow p )\] .
Complete step-by-step solution:
We have been given that \[\overrightarrow {DA} = \overrightarrow a \] , \[\overrightarrow {AB} = \overrightarrow b \] and \[\overrightarrow {CB} = k\overrightarrow a \] .
Let us consider the point \[D\] as the origin and draw a figure with the given vectors as follows:

Image: Vector Diagram
Then the position vector of the point \[A = \overrightarrow {DA} = \overrightarrow a \] .
Applying the formula, we have
\[\overrightarrow {AB} = \] Position vector of \[B - \] Position vector of \[A\]
\[ \Rightarrow \overrightarrow b = \] Position vector of \[B - \overrightarrow a \] [Since \[\overrightarrow {AB} = \overrightarrow b \] ]
\[ \Rightarrow \] Position vector of \[B = \overrightarrow b + \overrightarrow a \]
Similarly,
\[\overrightarrow {CB} = \] Position vector of \[B - \] Position vector of \[C\]
\[ \Rightarrow k\overrightarrow a = \] \[(\overrightarrow b + \overrightarrow a ) - \] Position vector of \[C\] [Since \[\overrightarrow {CB} = k\overrightarrow a \] and Position vector of \[B = \overrightarrow b + \overrightarrow a \] ]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + \overrightarrow a - k\overrightarrow a \]
\[ \Rightarrow \] Position vector of \[C = \overrightarrow b + (1 - k\overrightarrow {)a} \]
Given that \[X\] and \[Y\] are mid-points of \[\overrightarrow {DB} \] and \[\overrightarrow {AC} \] respectively.
So, the position vector of the point \[X = \dfrac{{\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DB} = \overrightarrow b + \overrightarrow a \] ]
And, the position vector of the point \[Y = \dfrac{{(2 - k)\overrightarrow a + \overrightarrow b }}{2}\] [Since \[\overrightarrow {DC} = \overrightarrow b + (1 - k)\overrightarrow a \] and \[\overrightarrow {DA} = \overrightarrow a \]]
Now, \[\overrightarrow {XY} = \] Position vector of \[Y - \] Position vector of \[X\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(2 - k)\overrightarrow a }}{2} - \dfrac{{\overrightarrow b + \overrightarrow a }}{2}\]
\[ \Rightarrow \overrightarrow {XY} = \dfrac{{(1 - k)\overrightarrow a }}{2}\]
We will calculate the magnitude of \[\overrightarrow {XY} \] and equate it to the given numerical values to solve for \[k\]
So, \[\left| {\overrightarrow {XY} } \right| = \dfrac{{(1 - k)}}{2} \times \left| {\overrightarrow a } \right|\]
\[ \Rightarrow 4 = \dfrac{{(1 - k)}}{2} \times 17\] [Since \[\left| {\overrightarrow a } \right| = 17\] and \[\left| {\overrightarrow {XY} } \right| = 4\] ]
\[ \Rightarrow \dfrac{{17(1 - k)}}{2} = 4\]
\[ \Rightarrow 1 - k = 4 \times \dfrac{2}{{17}}\]
Further solving the above
\[1 - k = \dfrac{8}{{17}}\]
\[ \Rightarrow k = 1 - \dfrac{8}{{17}}\]
\[ \Rightarrow k = \dfrac{9}{{17}}\]
Thus, the value of \[k\] is equal to \[\dfrac{9}{{17}}\] .
Hence, option B. is the correct answer.
Note: If \[O\] is the origin, \[A,B\] are two points and \[\overrightarrow a ,\overrightarrow b \] are position vectors of \[A,B\] respectively, then, \[\overrightarrow {AB} = \overrightarrow b - \overrightarrow a \] and \[\overrightarrow {BA} = \overrightarrow a - \overrightarrow b \] . So, \[\overrightarrow {AB} = - \overrightarrow {BA} \] .
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
