
If $\overrightarrow a ,\overrightarrow b $ and $\overrightarrow c $ are non – coplanar vectors and if $\overrightarrow d $ is such that $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$ and $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ , where $x$ and $y$ are non – zero real numbers, then $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ equals ?
1. $3\overrightarrow c $
2. $ - \overrightarrow a $
3. $0$
4. $2\overrightarrow a $
Answer
218.1k+ views
Hint: Solve the given values of vector $\overrightarrow d $ and $\overrightarrow a $ then compare their values. Apply non – coplanar vectors condition to find the value of $x$ and $y$. In last, put all the required values in $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ and get the value.
Formula Used:
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$,$\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$(Given)
Complete step by step Solution:
Given that,
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$ \Rightarrow \overrightarrow d x = \overrightarrow a + \overrightarrow b + \overrightarrow c $
$\overrightarrow b + \overrightarrow c = \overrightarrow d x - \overrightarrow a - - - - - (1)$
And $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ \Rightarrow \overrightarrow a y = \overrightarrow b + \overrightarrow c + \overrightarrow d $
$\overrightarrow b + \overrightarrow c = \overrightarrow a y - \overrightarrow d - - - - - (2)$
From equation (1) and (2),
$\overrightarrow d x - \overrightarrow a = \overrightarrow a y - \overrightarrow d $
$\overrightarrow d x + \overrightarrow d = \overrightarrow a y + \overrightarrow a $
$\overrightarrow d \left( {x + 1} \right) = \overrightarrow a (y + 1)$
$ \Rightarrow \overrightarrow d \parallel \overrightarrow a $
Since $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ and $\overrightarrow d $ are non – coplanar vectors.
Therefore, $x = - 1,y = - 1$
Put the values in $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
So, $\overrightarrow d = \dfrac{1}{{ - 1}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$\overrightarrow d = - \overrightarrow a - \overrightarrow b - \overrightarrow c - - - - - (3)$
Now, $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ = \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \left( { - \overrightarrow a - \overrightarrow b - \overrightarrow c } \right)} \right)Equation{\text{ }}\left( 3 \right)$
$ = 0$
Hence, the correct option is 3.
Note:The key concept involved in solving this problem is a good knowledge of non-coplanar vectors. Students must remember that Vectors are said to be non-coplanar if and only if their support lines are not parallel to the same plane.
Formula Used:
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$,$\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$(Given)
Complete step by step Solution:
Given that,
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$ \Rightarrow \overrightarrow d x = \overrightarrow a + \overrightarrow b + \overrightarrow c $
$\overrightarrow b + \overrightarrow c = \overrightarrow d x - \overrightarrow a - - - - - (1)$
And $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ \Rightarrow \overrightarrow a y = \overrightarrow b + \overrightarrow c + \overrightarrow d $
$\overrightarrow b + \overrightarrow c = \overrightarrow a y - \overrightarrow d - - - - - (2)$
From equation (1) and (2),
$\overrightarrow d x - \overrightarrow a = \overrightarrow a y - \overrightarrow d $
$\overrightarrow d x + \overrightarrow d = \overrightarrow a y + \overrightarrow a $
$\overrightarrow d \left( {x + 1} \right) = \overrightarrow a (y + 1)$
$ \Rightarrow \overrightarrow d \parallel \overrightarrow a $
Since $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ and $\overrightarrow d $ are non – coplanar vectors.
Therefore, $x = - 1,y = - 1$
Put the values in $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
So, $\overrightarrow d = \dfrac{1}{{ - 1}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$\overrightarrow d = - \overrightarrow a - \overrightarrow b - \overrightarrow c - - - - - (3)$
Now, $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ = \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \left( { - \overrightarrow a - \overrightarrow b - \overrightarrow c } \right)} \right)Equation{\text{ }}\left( 3 \right)$
$ = 0$
Hence, the correct option is 3.
Note:The key concept involved in solving this problem is a good knowledge of non-coplanar vectors. Students must remember that Vectors are said to be non-coplanar if and only if their support lines are not parallel to the same plane.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

