
If $\overrightarrow a ,\overrightarrow b $ and $\overrightarrow c $ are non – coplanar vectors and if $\overrightarrow d $ is such that $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$ and $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ , where $x$ and $y$ are non – zero real numbers, then $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ equals ?
1. $3\overrightarrow c $
2. $ - \overrightarrow a $
3. $0$
4. $2\overrightarrow a $
Answer
216.6k+ views
Hint: Solve the given values of vector $\overrightarrow d $ and $\overrightarrow a $ then compare their values. Apply non – coplanar vectors condition to find the value of $x$ and $y$. In last, put all the required values in $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ and get the value.
Formula Used:
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$,$\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$(Given)
Complete step by step Solution:
Given that,
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$ \Rightarrow \overrightarrow d x = \overrightarrow a + \overrightarrow b + \overrightarrow c $
$\overrightarrow b + \overrightarrow c = \overrightarrow d x - \overrightarrow a - - - - - (1)$
And $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ \Rightarrow \overrightarrow a y = \overrightarrow b + \overrightarrow c + \overrightarrow d $
$\overrightarrow b + \overrightarrow c = \overrightarrow a y - \overrightarrow d - - - - - (2)$
From equation (1) and (2),
$\overrightarrow d x - \overrightarrow a = \overrightarrow a y - \overrightarrow d $
$\overrightarrow d x + \overrightarrow d = \overrightarrow a y + \overrightarrow a $
$\overrightarrow d \left( {x + 1} \right) = \overrightarrow a (y + 1)$
$ \Rightarrow \overrightarrow d \parallel \overrightarrow a $
Since $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ and $\overrightarrow d $ are non – coplanar vectors.
Therefore, $x = - 1,y = - 1$
Put the values in $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
So, $\overrightarrow d = \dfrac{1}{{ - 1}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$\overrightarrow d = - \overrightarrow a - \overrightarrow b - \overrightarrow c - - - - - (3)$
Now, $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ = \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \left( { - \overrightarrow a - \overrightarrow b - \overrightarrow c } \right)} \right)Equation{\text{ }}\left( 3 \right)$
$ = 0$
Hence, the correct option is 3.
Note:The key concept involved in solving this problem is a good knowledge of non-coplanar vectors. Students must remember that Vectors are said to be non-coplanar if and only if their support lines are not parallel to the same plane.
Formula Used:
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$,$\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$(Given)
Complete step by step Solution:
Given that,
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$ \Rightarrow \overrightarrow d x = \overrightarrow a + \overrightarrow b + \overrightarrow c $
$\overrightarrow b + \overrightarrow c = \overrightarrow d x - \overrightarrow a - - - - - (1)$
And $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ \Rightarrow \overrightarrow a y = \overrightarrow b + \overrightarrow c + \overrightarrow d $
$\overrightarrow b + \overrightarrow c = \overrightarrow a y - \overrightarrow d - - - - - (2)$
From equation (1) and (2),
$\overrightarrow d x - \overrightarrow a = \overrightarrow a y - \overrightarrow d $
$\overrightarrow d x + \overrightarrow d = \overrightarrow a y + \overrightarrow a $
$\overrightarrow d \left( {x + 1} \right) = \overrightarrow a (y + 1)$
$ \Rightarrow \overrightarrow d \parallel \overrightarrow a $
Since $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ and $\overrightarrow d $ are non – coplanar vectors.
Therefore, $x = - 1,y = - 1$
Put the values in $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
So, $\overrightarrow d = \dfrac{1}{{ - 1}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$\overrightarrow d = - \overrightarrow a - \overrightarrow b - \overrightarrow c - - - - - (3)$
Now, $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ = \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \left( { - \overrightarrow a - \overrightarrow b - \overrightarrow c } \right)} \right)Equation{\text{ }}\left( 3 \right)$
$ = 0$
Hence, the correct option is 3.
Note:The key concept involved in solving this problem is a good knowledge of non-coplanar vectors. Students must remember that Vectors are said to be non-coplanar if and only if their support lines are not parallel to the same plane.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

