
If $\overrightarrow a ,\overrightarrow b $ and $\overrightarrow c $ are non – coplanar vectors and if $\overrightarrow d $ is such that $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$ and $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ , where $x$ and $y$ are non – zero real numbers, then $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ equals ?
1. $3\overrightarrow c $
2. $ - \overrightarrow a $
3. $0$
4. $2\overrightarrow a $
Answer
162.3k+ views
Hint: Solve the given values of vector $\overrightarrow d $ and $\overrightarrow a $ then compare their values. Apply non – coplanar vectors condition to find the value of $x$ and $y$. In last, put all the required values in $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$ and get the value.
Formula Used:
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$,$\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$(Given)
Complete step by step Solution:
Given that,
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$ \Rightarrow \overrightarrow d x = \overrightarrow a + \overrightarrow b + \overrightarrow c $
$\overrightarrow b + \overrightarrow c = \overrightarrow d x - \overrightarrow a - - - - - (1)$
And $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ \Rightarrow \overrightarrow a y = \overrightarrow b + \overrightarrow c + \overrightarrow d $
$\overrightarrow b + \overrightarrow c = \overrightarrow a y - \overrightarrow d - - - - - (2)$
From equation (1) and (2),
$\overrightarrow d x - \overrightarrow a = \overrightarrow a y - \overrightarrow d $
$\overrightarrow d x + \overrightarrow d = \overrightarrow a y + \overrightarrow a $
$\overrightarrow d \left( {x + 1} \right) = \overrightarrow a (y + 1)$
$ \Rightarrow \overrightarrow d \parallel \overrightarrow a $
Since $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ and $\overrightarrow d $ are non – coplanar vectors.
Therefore, $x = - 1,y = - 1$
Put the values in $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
So, $\overrightarrow d = \dfrac{1}{{ - 1}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$\overrightarrow d = - \overrightarrow a - \overrightarrow b - \overrightarrow c - - - - - (3)$
Now, $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ = \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \left( { - \overrightarrow a - \overrightarrow b - \overrightarrow c } \right)} \right)Equation{\text{ }}\left( 3 \right)$
$ = 0$
Hence, the correct option is 3.
Note:The key concept involved in solving this problem is a good knowledge of non-coplanar vectors. Students must remember that Vectors are said to be non-coplanar if and only if their support lines are not parallel to the same plane.
Formula Used:
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$,$\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$(Given)
Complete step by step Solution:
Given that,
$\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$ \Rightarrow \overrightarrow d x = \overrightarrow a + \overrightarrow b + \overrightarrow c $
$\overrightarrow b + \overrightarrow c = \overrightarrow d x - \overrightarrow a - - - - - (1)$
And $\overrightarrow a = \dfrac{1}{y}\left( {\overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ \Rightarrow \overrightarrow a y = \overrightarrow b + \overrightarrow c + \overrightarrow d $
$\overrightarrow b + \overrightarrow c = \overrightarrow a y - \overrightarrow d - - - - - (2)$
From equation (1) and (2),
$\overrightarrow d x - \overrightarrow a = \overrightarrow a y - \overrightarrow d $
$\overrightarrow d x + \overrightarrow d = \overrightarrow a y + \overrightarrow a $
$\overrightarrow d \left( {x + 1} \right) = \overrightarrow a (y + 1)$
$ \Rightarrow \overrightarrow d \parallel \overrightarrow a $
Since $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ and $\overrightarrow d $ are non – coplanar vectors.
Therefore, $x = - 1,y = - 1$
Put the values in $\overrightarrow d = \dfrac{1}{x}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
So, $\overrightarrow d = \dfrac{1}{{ - 1}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$
$\overrightarrow d = - \overrightarrow a - \overrightarrow b - \overrightarrow c - - - - - (3)$
Now, $\dfrac{1}{{xy}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d } \right)$
$ = \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c + \left( { - \overrightarrow a - \overrightarrow b - \overrightarrow c } \right)} \right)Equation{\text{ }}\left( 3 \right)$
$ = 0$
Hence, the correct option is 3.
Note:The key concept involved in solving this problem is a good knowledge of non-coplanar vectors. Students must remember that Vectors are said to be non-coplanar if and only if their support lines are not parallel to the same plane.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
