
If \[{}^{n - 1}{C_r} = \left( {{k^2} - 3} \right) \cdot {}^n{C_{r + 1}}\], then find the value of the interval where \[k\] lies.
A. \[\left[ { - \sqrt 3 ,\sqrt 3 } \right]\]
B. \[\left( { - \infty , - 2} \right)\]
C. \[\left( {2,\infty } \right)\]
D. \[\left( {\sqrt 3 ,2} \right]\]
Answer
164.1k+ views
Hint: Here, an equation of the combination term is given. First, simplify the equation by using the combination formula. Then, check the condition required for the \[r\] in the combination formula. After that, solve that inequality condition and find the required answer.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
The condition required for the \[r\] In \[{}^n{C_r}\]: \[0 < r \le n - 1\]
Complete step by step solution:The given equation is \[{}^{n - 1}{C_r} = \left( {{k^2} - 3} \right) \cdot {}^n{C_{r + 1}}\].
Let’s simplify the above equation.
\[\left( {{k^2} - 3} \right) = \dfrac{{{}^{n - 1}{C_r}}}{{{}^n{C_{r + 1}}}}\]
Simplify the right-hand side by applying the formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
\[{k^2} - 3 = \dfrac{{\dfrac{{\left( {n - 1} \right)!}}{{r!\left( {n - 1 - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r + 1} \right)!\left( {n - r - 1} \right)!}}}}\]
Cancel out the common terms and simplify the terms using factorial property \[n! = n\left( {n - 1} \right)!\].
\[ \Rightarrow {k^2} - 3 = \dfrac{{\dfrac{{\left( {n - 1} \right)!}}{{r!}}}}{{\dfrac{{n\left( {n - 1} \right)!}}{{\left( {r + 1} \right)r!}}}}\]
Again, cancel out the common terms.
\[ \Rightarrow {k^2} - 3 = \dfrac{1}{{\dfrac{n}{{\left( {r + 1} \right)}}}}\]
\[ \Rightarrow {k^2} - 3 = \dfrac{{r + 1}}{n}\] \[.....\left( 1 \right)\]
We know that the condition required for the \[r\] In \[{}^n{C_r}\] is \[0 < r \le n - 1\].
Solve this condition.
Add 1 on each side.
\[1 < r + 1 \le n\]
Divide each term by \[n\].
\[ \Rightarrow \dfrac{1}{n} < \dfrac{{r + 1}}{n} \le \dfrac{n}{n}\]
\[ \Rightarrow \dfrac{1}{n} < \dfrac{{r + 1}}{n} \le 1\]
Substitute the equation \[\left( 1 \right)\] in the above inequality.
\[ \Rightarrow \dfrac{1}{n} < {k^2} - 3 \le 1\]
Add 3 on each side.
\[ \Rightarrow \dfrac{1}{n} + 3 < {k^2} - 3 + 3 \le 1 + 3\]
\[ \Rightarrow \dfrac{1}{n} + 3 < {k^2} \le 4\]
Take square root of each term.
\[ \Rightarrow \sqrt {\dfrac{1}{n} + 3} < \sqrt {{k^2}} \le \sqrt 4 \]
\[ \Rightarrow \sqrt {\dfrac{1}{n} + 3} < k \le 2\]
As \[n \to \infty \], \[\dfrac{1}{n} \to 0\] .
\[ \Rightarrow \sqrt 3 < k \le 2\]
\[ \Rightarrow k \in \left( {\sqrt 3 ,2} \right]\]
Option ‘D’ is correct
Note: Students often get confused about the inequality condition of \[r\] in \[{}^n{C_r}\]. They, consider it as \[0 \le r \le n - 1\] or \[0 \le r \le n\]. Both are the incorrect equations. Because of that, they get incorrect solution.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
The condition required for the \[r\] In \[{}^n{C_r}\]: \[0 < r \le n - 1\]
Complete step by step solution:The given equation is \[{}^{n - 1}{C_r} = \left( {{k^2} - 3} \right) \cdot {}^n{C_{r + 1}}\].
Let’s simplify the above equation.
\[\left( {{k^2} - 3} \right) = \dfrac{{{}^{n - 1}{C_r}}}{{{}^n{C_{r + 1}}}}\]
Simplify the right-hand side by applying the formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
\[{k^2} - 3 = \dfrac{{\dfrac{{\left( {n - 1} \right)!}}{{r!\left( {n - 1 - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r + 1} \right)!\left( {n - r - 1} \right)!}}}}\]
Cancel out the common terms and simplify the terms using factorial property \[n! = n\left( {n - 1} \right)!\].
\[ \Rightarrow {k^2} - 3 = \dfrac{{\dfrac{{\left( {n - 1} \right)!}}{{r!}}}}{{\dfrac{{n\left( {n - 1} \right)!}}{{\left( {r + 1} \right)r!}}}}\]
Again, cancel out the common terms.
\[ \Rightarrow {k^2} - 3 = \dfrac{1}{{\dfrac{n}{{\left( {r + 1} \right)}}}}\]
\[ \Rightarrow {k^2} - 3 = \dfrac{{r + 1}}{n}\] \[.....\left( 1 \right)\]
We know that the condition required for the \[r\] In \[{}^n{C_r}\] is \[0 < r \le n - 1\].
Solve this condition.
Add 1 on each side.
\[1 < r + 1 \le n\]
Divide each term by \[n\].
\[ \Rightarrow \dfrac{1}{n} < \dfrac{{r + 1}}{n} \le \dfrac{n}{n}\]
\[ \Rightarrow \dfrac{1}{n} < \dfrac{{r + 1}}{n} \le 1\]
Substitute the equation \[\left( 1 \right)\] in the above inequality.
\[ \Rightarrow \dfrac{1}{n} < {k^2} - 3 \le 1\]
Add 3 on each side.
\[ \Rightarrow \dfrac{1}{n} + 3 < {k^2} - 3 + 3 \le 1 + 3\]
\[ \Rightarrow \dfrac{1}{n} + 3 < {k^2} \le 4\]
Take square root of each term.
\[ \Rightarrow \sqrt {\dfrac{1}{n} + 3} < \sqrt {{k^2}} \le \sqrt 4 \]
\[ \Rightarrow \sqrt {\dfrac{1}{n} + 3} < k \le 2\]
As \[n \to \infty \], \[\dfrac{1}{n} \to 0\] .
\[ \Rightarrow \sqrt 3 < k \le 2\]
\[ \Rightarrow k \in \left( {\sqrt 3 ,2} \right]\]
Option ‘D’ is correct
Note: Students often get confused about the inequality condition of \[r\] in \[{}^n{C_r}\]. They, consider it as \[0 \le r \le n - 1\] or \[0 \le r \le n\]. Both are the incorrect equations. Because of that, they get incorrect solution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
