
If magnification is positive, the nature of the image is:
(A) Real and inverted
(B) Virtual and erect
(C) Real
(D) None of these
Answer
427.4k+ views
Hint Magnification is given by the ratio of image size to the object size $m = \dfrac{I}{O}$ . Cartesian sign conventions say that when the ratio is positive, the image is virtual and erect. When the ratio is negative the image is real and virtual.
Complete step-by-step answer
Magnification can be defined as the ratio of size of the image to the size of the object. It is denoted by m.
$m = \dfrac{I}{O}$

For example
This magnification can tell us about the nature of the image based on the sign itself. If the ratio is negative then the image is real and inverted. If the ratio is positive then the image is virtual and erect.
So, according to these sigh conventions, when the magnification is positive then the image has to be erect and virtual.
Hence, the correct option will be B.
Note Lateral magnification is when an object is placed perpendicular to the principle axis.
$m = - \dfrac{v}{u}$
Axial magnification is when object lies on the principle axis
$m = - \dfrac{{{v_2} - {v_1}}}{{{u_2} - {u_1}}}$
Areal magnification is if a 2D object is placed with its plane perpendicular to the principle axis. It is the ratio of area of image to that of object.
$m = \dfrac{{{A_i}}}{{{A_o}}}$ .
Complete step-by-step answer
Magnification can be defined as the ratio of size of the image to the size of the object. It is denoted by m.
$m = \dfrac{I}{O}$

For example
This magnification can tell us about the nature of the image based on the sign itself. If the ratio is negative then the image is real and inverted. If the ratio is positive then the image is virtual and erect.
So, according to these sigh conventions, when the magnification is positive then the image has to be erect and virtual.
Hence, the correct option will be B.
Note Lateral magnification is when an object is placed perpendicular to the principle axis.
$m = - \dfrac{v}{u}$
Axial magnification is when object lies on the principle axis
$m = - \dfrac{{{v_2} - {v_1}}}{{{u_2} - {u_1}}}$
Areal magnification is if a 2D object is placed with its plane perpendicular to the principle axis. It is the ratio of area of image to that of object.
$m = \dfrac{{{A_i}}}{{{A_o}}}$ .
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE
