
If $\left\{ p \right\}$ denotes the fractional part of the number $p$, then what is the value of $\left\{ {\dfrac{{{3^{200}}}}{8}} \right\}$?
A. $\dfrac{5}{8}$
B. $\dfrac{1}{8}$
C. $\dfrac{7}{8}$
D. $\dfrac{3}{8}$
Answer
233.1k+ views
Hint: Write ${3^{200}}$ as ${9^{100}}$ and $9$ as $\left( {8 + 1} \right)$. After that use the binomial theorem and separate the fractional part from the expression obtained. The last term represents the fractional part. All other terms are the whole number.
Formula Used:
${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
${\left( {{a^m}} \right)^n} = {a^{mn}}$
$\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Complete step by step solution:
The given number is $\dfrac{{{3^{200}}}}{8}$
Use the formula ${\left( {{a^m}} \right)^n} = {a^{mn}}$
${3^{200}} = {\left( {{3^2}} \right)^{100}} = {9^{100}}$
We can write $9 = 8 + 1$
So, ${9^{100}} = {\left( {8 + 1} \right)^{100}}$
Use binomial theorem ${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
Putting $a = 8,b = 1,n = 100$, we get
${\left( {8 + 1} \right)^{100}} = {\left( 8 \right)^{100}} + {}^{100}{C_1}{\left( 8 \right)^{100 - 1}}\left( 1 \right) + {}^{100}{C_2}{\left( 8 \right)^{100 - 2}}{\left( 1 \right)^2} + ..... + {}^{100}{C_{99}}\left( 8 \right){\left( 1 \right)^{100 - 1}} + {\left( 1 \right)^{100}}$
$ = {8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ...100 \times 8 + 1$
Dividing both sides by $8$, we get
$ \Rightarrow \dfrac{{{{\left( {8 + 1} \right)}^{100}}}}{8} = \dfrac{{{8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ... + 100 \times 8 + 1}}{8}$
Separate each term on right-hand side
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = \dfrac{{{8^{100}}}}{8} + 100 \times \dfrac{{{8^{99}}}}{8} + 4950 \times \dfrac{{{8^{98}}}}{8} + ... + 100 \times \dfrac{8}{8} + \dfrac{1}{8}$
Use the formula $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = {8^{99}} + 100 \times {8^{98}} + 4950 \times {8^{97}} + ... + 100 + \dfrac{1}{8}$
Clearly, the fractional part of the above expression is $\dfrac{1}{8}$
Option ‘B’ is correct
Note: Fractional part of a fraction is a fraction. So, it is obvious that fractional part of every proper fraction is itself but for improper fraction it is not. We can express every improper fraction as a mixed fraction writing the whole part and the fractional part separately.
Formula Used:
${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
${\left( {{a^m}} \right)^n} = {a^{mn}}$
$\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Complete step by step solution:
The given number is $\dfrac{{{3^{200}}}}{8}$
Use the formula ${\left( {{a^m}} \right)^n} = {a^{mn}}$
${3^{200}} = {\left( {{3^2}} \right)^{100}} = {9^{100}}$
We can write $9 = 8 + 1$
So, ${9^{100}} = {\left( {8 + 1} \right)^{100}}$
Use binomial theorem ${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
Putting $a = 8,b = 1,n = 100$, we get
${\left( {8 + 1} \right)^{100}} = {\left( 8 \right)^{100}} + {}^{100}{C_1}{\left( 8 \right)^{100 - 1}}\left( 1 \right) + {}^{100}{C_2}{\left( 8 \right)^{100 - 2}}{\left( 1 \right)^2} + ..... + {}^{100}{C_{99}}\left( 8 \right){\left( 1 \right)^{100 - 1}} + {\left( 1 \right)^{100}}$
$ = {8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ...100 \times 8 + 1$
Dividing both sides by $8$, we get
$ \Rightarrow \dfrac{{{{\left( {8 + 1} \right)}^{100}}}}{8} = \dfrac{{{8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ... + 100 \times 8 + 1}}{8}$
Separate each term on right-hand side
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = \dfrac{{{8^{100}}}}{8} + 100 \times \dfrac{{{8^{99}}}}{8} + 4950 \times \dfrac{{{8^{98}}}}{8} + ... + 100 \times \dfrac{8}{8} + \dfrac{1}{8}$
Use the formula $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = {8^{99}} + 100 \times {8^{98}} + 4950 \times {8^{97}} + ... + 100 + \dfrac{1}{8}$
Clearly, the fractional part of the above expression is $\dfrac{1}{8}$
Option ‘B’ is correct
Note: Fractional part of a fraction is a fraction. So, it is obvious that fractional part of every proper fraction is itself but for improper fraction it is not. We can express every improper fraction as a mixed fraction writing the whole part and the fractional part separately.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

