
If $\left\{ p \right\}$ denotes the fractional part of the number $p$, then what is the value of $\left\{ {\dfrac{{{3^{200}}}}{8}} \right\}$?
A. $\dfrac{5}{8}$
B. $\dfrac{1}{8}$
C. $\dfrac{7}{8}$
D. $\dfrac{3}{8}$
Answer
216.6k+ views
Hint: Write ${3^{200}}$ as ${9^{100}}$ and $9$ as $\left( {8 + 1} \right)$. After that use the binomial theorem and separate the fractional part from the expression obtained. The last term represents the fractional part. All other terms are the whole number.
Formula Used:
${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
${\left( {{a^m}} \right)^n} = {a^{mn}}$
$\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Complete step by step solution:
The given number is $\dfrac{{{3^{200}}}}{8}$
Use the formula ${\left( {{a^m}} \right)^n} = {a^{mn}}$
${3^{200}} = {\left( {{3^2}} \right)^{100}} = {9^{100}}$
We can write $9 = 8 + 1$
So, ${9^{100}} = {\left( {8 + 1} \right)^{100}}$
Use binomial theorem ${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
Putting $a = 8,b = 1,n = 100$, we get
${\left( {8 + 1} \right)^{100}} = {\left( 8 \right)^{100}} + {}^{100}{C_1}{\left( 8 \right)^{100 - 1}}\left( 1 \right) + {}^{100}{C_2}{\left( 8 \right)^{100 - 2}}{\left( 1 \right)^2} + ..... + {}^{100}{C_{99}}\left( 8 \right){\left( 1 \right)^{100 - 1}} + {\left( 1 \right)^{100}}$
$ = {8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ...100 \times 8 + 1$
Dividing both sides by $8$, we get
$ \Rightarrow \dfrac{{{{\left( {8 + 1} \right)}^{100}}}}{8} = \dfrac{{{8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ... + 100 \times 8 + 1}}{8}$
Separate each term on right-hand side
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = \dfrac{{{8^{100}}}}{8} + 100 \times \dfrac{{{8^{99}}}}{8} + 4950 \times \dfrac{{{8^{98}}}}{8} + ... + 100 \times \dfrac{8}{8} + \dfrac{1}{8}$
Use the formula $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = {8^{99}} + 100 \times {8^{98}} + 4950 \times {8^{97}} + ... + 100 + \dfrac{1}{8}$
Clearly, the fractional part of the above expression is $\dfrac{1}{8}$
Option ‘B’ is correct
Note: Fractional part of a fraction is a fraction. So, it is obvious that fractional part of every proper fraction is itself but for improper fraction it is not. We can express every improper fraction as a mixed fraction writing the whole part and the fractional part separately.
Formula Used:
${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
${\left( {{a^m}} \right)^n} = {a^{mn}}$
$\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Complete step by step solution:
The given number is $\dfrac{{{3^{200}}}}{8}$
Use the formula ${\left( {{a^m}} \right)^n} = {a^{mn}}$
${3^{200}} = {\left( {{3^2}} \right)^{100}} = {9^{100}}$
We can write $9 = 8 + 1$
So, ${9^{100}} = {\left( {8 + 1} \right)^{100}}$
Use binomial theorem ${\left( {a + b} \right)^n} = {a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + ..... + {}^n{C_{n - 1}}a{b^{n - 1}} + {b^n}$
Putting $a = 8,b = 1,n = 100$, we get
${\left( {8 + 1} \right)^{100}} = {\left( 8 \right)^{100}} + {}^{100}{C_1}{\left( 8 \right)^{100 - 1}}\left( 1 \right) + {}^{100}{C_2}{\left( 8 \right)^{100 - 2}}{\left( 1 \right)^2} + ..... + {}^{100}{C_{99}}\left( 8 \right){\left( 1 \right)^{100 - 1}} + {\left( 1 \right)^{100}}$
$ = {8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ...100 \times 8 + 1$
Dividing both sides by $8$, we get
$ \Rightarrow \dfrac{{{{\left( {8 + 1} \right)}^{100}}}}{8} = \dfrac{{{8^{100}} + 100 \times {8^{99}} + 4950 \times {8^{98}} + ... + 100 \times 8 + 1}}{8}$
Separate each term on right-hand side
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = \dfrac{{{8^{100}}}}{8} + 100 \times \dfrac{{{8^{99}}}}{8} + 4950 \times \dfrac{{{8^{98}}}}{8} + ... + 100 \times \dfrac{8}{8} + \dfrac{1}{8}$
Use the formula $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$ \Rightarrow \dfrac{{{9^{100}}}}{8} = {8^{99}} + 100 \times {8^{98}} + 4950 \times {8^{97}} + ... + 100 + \dfrac{1}{8}$
Clearly, the fractional part of the above expression is $\dfrac{1}{8}$
Option ‘B’ is correct
Note: Fractional part of a fraction is a fraction. So, it is obvious that fractional part of every proper fraction is itself but for improper fraction it is not. We can express every improper fraction as a mixed fraction writing the whole part and the fractional part separately.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

