
If \[\left( {n - m} \right)\] is odd and \[\left| m \right| \ne \left| n \right|\], then what is the value of \[\int\limits_0^\pi {\cos mx\sin nxdx} \]?
A. \[\dfrac{{2n}}{{{n^2} - {m^2}}}\]
B. 0
C. \[\dfrac{{2n}}{{{m^2} - {n^2}}}\]
D. \[\dfrac{{2m}}{{{n^2} - {m^2}}}\]
Answer
163.5k+ views
Hint: Here, a definite integral is given. First, multiply and divide the given integral by 2. Then, simplify the term by applying the trigonometric formula \[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. After that, apply the integration rule \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\] and simplify the integral. Then, apply the integration formula \[\int\limits_a^b {\sin \left( {A + B} \right)xdx = \left[ { - \dfrac{{\cos \left( {A + B} \right)x}}{{\left( {A + B} \right)}}} \right]} _a^b\] and solve the integral. In the end, apply the upper and lower limits and simplify the terms to get the required answer.
Formula Used:\[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {\sin \left( {A + B} \right)xdx = \left[ { - \dfrac{{\cos \left( {A + B} \right)x}}{{\left( {A + B} \right)}}} \right]} _a^b\]
Complete step by step solution:Given:
The definite integral is \[\int\limits_0^\pi {\cos mx\sin nxdx} \], where \[\left( {n - m} \right)\] is odd and \[\left| m \right| \ne \left| n \right|\].
Let consider,
\[I = \int\limits_0^\pi {\cos mx\sin nxdx} \]
Multiply and divide the right-hand side by 2.
\[I = \dfrac{1}{2}\int\limits_0^\pi {2\cos mx\sin nxdx} \]
Now use the trigonometric identity \[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
\[I = \dfrac{1}{2}\int\limits_0^\pi {\left[ {\sin \left( {mx + nx} \right) - \sin \left( {mx - nx} \right)} \right]dx} \]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^\pi {\left[ {\sin \left( {m + n} \right)x - \sin \left( {m - n} \right)x} \right]dx} \]
Apply the integration rule \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\].
\[I = \dfrac{1}{2}\left[ {\int\limits_0^\pi {\sin \left( {m + n} \right)xdx - \int\limits_0^\pi {\sin \left( {m - n} \right)xdx} } } \right]\]
Now solve the integrals by applying the integration formula \[\int\limits_a^b {\sin \left( {A + B} \right)xdx = \left[ { - \dfrac{{\cos \left( {A + B} \right)x}}{{\left( {A + B} \right)}}} \right]} _a^b\].
We get,
\[I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{\cos \left( {m + n} \right)x}}{{\left( {m + n} \right)}}} \right]_0^\pi - \left[ { - \dfrac{{\cos \left( {m - n} \right)x}}{{\left( {m - n} \right)}}} \right]_0^\pi } \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{\cos \left( {m + n} \right)x}}{{\left( {m + n} \right)}}} \right]_0^\pi + \left[ {\dfrac{{\cos \left( {m - n} \right)x}}{{\left( {m - n} \right)}}} \right]_0^\pi } \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{\cos \left( {m + n} \right)\pi }}{{\left( {m + n} \right)}} + \dfrac{{\cos \left( {\left( {m + n} \right)0} \right)}}{{\left( {m + n} \right)}}} \right] + \left[ {\dfrac{{\cos \left( {m - n} \right)\pi }}{{\left( {m - n} \right)}} - \dfrac{{\cos \left( {\left( {m - n} \right)0} \right)}}{{\left( {m - n} \right)}}} \right]} \right]\]
Use the trigonometric properties \[\cos 0 = 1\] and \[\cos n\pi = - 1\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{ - 1}}{{\left( {m + n} \right)}} + \dfrac{1}{{\left( {m + n} \right)}}} \right] + \left[ {\dfrac{{ - 1}}{{\left( {m - n} \right)}} - \dfrac{1}{{\left( {m - n} \right)}}} \right]} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ {\dfrac{1}{{m + n}} + \dfrac{1}{{m + n}}} \right] + \left[ {\dfrac{{ - 1}}{{m - n}} - \dfrac{1}{{m - n}}} \right]} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{2}{{m + n}} - \dfrac{2}{{m - n}}} \right]\]
\[ \Rightarrow I = \dfrac{1}{{m + n}} - \dfrac{1}{{m - n}}\]
Solve the right-hand side.
\[ \Rightarrow I = \dfrac{{\left( {m - n} \right) - \left( {m + n} \right)}}{{\left( {m + n} \right)\left( {m - n} \right)}}\]
\[ \Rightarrow I = \dfrac{{m - n - m - n}}{{{m^2} - {n^2}}}\]
\[ \Rightarrow I = \dfrac{{ - 2n}}{{{m^2} - {n^2}}}\]
\[ \Rightarrow I = \dfrac{{2n}}{{{n^2} - {m^2}}}\]
Therefore, \[\int\limits_0^\pi {\cos mx\sin nxdx} = \dfrac{{2n}}{{{n^2} - {m^2}}}\].
Option ‘A’ is correct
Note: Students get confused and make mistake while integrating \[\int\limits_a^b {\sin \left( {m + n} \right)xdx} \]. They apply the formula \[\int\limits_a^b {\sin \left( {m + n} \right)xdx} = \left[ { - \cos \left( {m + n} \right)x} \right]_a^b\], which is an incorrect formula. The correct formula is \[\int\limits_a^b {\sin \left( {m + n} \right)xdx} = \left[ {\dfrac{{ - \cos \left( {m + n} \right)x}}{{m + n}}} \right]_a^b\].
Formula Used:\[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b {\sin \left( {A + B} \right)xdx = \left[ { - \dfrac{{\cos \left( {A + B} \right)x}}{{\left( {A + B} \right)}}} \right]} _a^b\]
Complete step by step solution:Given:
The definite integral is \[\int\limits_0^\pi {\cos mx\sin nxdx} \], where \[\left( {n - m} \right)\] is odd and \[\left| m \right| \ne \left| n \right|\].
Let consider,
\[I = \int\limits_0^\pi {\cos mx\sin nxdx} \]
Multiply and divide the right-hand side by 2.
\[I = \dfrac{1}{2}\int\limits_0^\pi {2\cos mx\sin nxdx} \]
Now use the trigonometric identity \[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
\[I = \dfrac{1}{2}\int\limits_0^\pi {\left[ {\sin \left( {mx + nx} \right) - \sin \left( {mx - nx} \right)} \right]dx} \]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^\pi {\left[ {\sin \left( {m + n} \right)x - \sin \left( {m - n} \right)x} \right]dx} \]
Apply the integration rule \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\].
\[I = \dfrac{1}{2}\left[ {\int\limits_0^\pi {\sin \left( {m + n} \right)xdx - \int\limits_0^\pi {\sin \left( {m - n} \right)xdx} } } \right]\]
Now solve the integrals by applying the integration formula \[\int\limits_a^b {\sin \left( {A + B} \right)xdx = \left[ { - \dfrac{{\cos \left( {A + B} \right)x}}{{\left( {A + B} \right)}}} \right]} _a^b\].
We get,
\[I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{\cos \left( {m + n} \right)x}}{{\left( {m + n} \right)}}} \right]_0^\pi - \left[ { - \dfrac{{\cos \left( {m - n} \right)x}}{{\left( {m - n} \right)}}} \right]_0^\pi } \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{\cos \left( {m + n} \right)x}}{{\left( {m + n} \right)}}} \right]_0^\pi + \left[ {\dfrac{{\cos \left( {m - n} \right)x}}{{\left( {m - n} \right)}}} \right]_0^\pi } \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{\cos \left( {m + n} \right)\pi }}{{\left( {m + n} \right)}} + \dfrac{{\cos \left( {\left( {m + n} \right)0} \right)}}{{\left( {m + n} \right)}}} \right] + \left[ {\dfrac{{\cos \left( {m - n} \right)\pi }}{{\left( {m - n} \right)}} - \dfrac{{\cos \left( {\left( {m - n} \right)0} \right)}}{{\left( {m - n} \right)}}} \right]} \right]\]
Use the trigonometric properties \[\cos 0 = 1\] and \[\cos n\pi = - 1\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ { - \dfrac{{ - 1}}{{\left( {m + n} \right)}} + \dfrac{1}{{\left( {m + n} \right)}}} \right] + \left[ {\dfrac{{ - 1}}{{\left( {m - n} \right)}} - \dfrac{1}{{\left( {m - n} \right)}}} \right]} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left[ {\dfrac{1}{{m + n}} + \dfrac{1}{{m + n}}} \right] + \left[ {\dfrac{{ - 1}}{{m - n}} - \dfrac{1}{{m - n}}} \right]} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\dfrac{2}{{m + n}} - \dfrac{2}{{m - n}}} \right]\]
\[ \Rightarrow I = \dfrac{1}{{m + n}} - \dfrac{1}{{m - n}}\]
Solve the right-hand side.
\[ \Rightarrow I = \dfrac{{\left( {m - n} \right) - \left( {m + n} \right)}}{{\left( {m + n} \right)\left( {m - n} \right)}}\]
\[ \Rightarrow I = \dfrac{{m - n - m - n}}{{{m^2} - {n^2}}}\]
\[ \Rightarrow I = \dfrac{{ - 2n}}{{{m^2} - {n^2}}}\]
\[ \Rightarrow I = \dfrac{{2n}}{{{n^2} - {m^2}}}\]
Therefore, \[\int\limits_0^\pi {\cos mx\sin nxdx} = \dfrac{{2n}}{{{n^2} - {m^2}}}\].
Option ‘A’ is correct
Note: Students get confused and make mistake while integrating \[\int\limits_a^b {\sin \left( {m + n} \right)xdx} \]. They apply the formula \[\int\limits_a^b {\sin \left( {m + n} \right)xdx} = \left[ { - \cos \left( {m + n} \right)x} \right]_a^b\], which is an incorrect formula. The correct formula is \[\int\limits_a^b {\sin \left( {m + n} \right)xdx} = \left[ {\dfrac{{ - \cos \left( {m + n} \right)x}}{{m + n}}} \right]_a^b\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
