
If \[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&1&1\\{{b_1}}&{{b_2}}&{{b_3}}\\{{a_1}}&{{a_2}}&{{a_3}}\end{array}} \right|\] then find the nature of two triangles whose coordinates are \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\]and \[({a_1},{b_1}),({a_2},{b_2}),({a_3},{b_3})\].
A. Congruent
B. Similar
C. Equal in areas
D. Right angled triangles
Answer
162k+ views
Hints Write the formula of the area of two triangles. Then use the given equation and properties of the determinant to obtain the relation between two triangles.
Formula used
The area of a triangle with vertices \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] is
\[\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right|\].
The value of determinant A and its transpose is always equal. That is,
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\\1&1&1\end{array}} \right|\]
Also,
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\\1&1&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&1&1\\{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\end{array}} \right|\].
Complete step by step solution
The given equation is,
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&1&1\\{{b_1}}&{{b_2}}&{{b_3}}\\{{a_1}}&{{a_2}}&{{a_3}}\end{array}} \right|\]
Now we will transpose the row and column of the right side determinat:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&{{b_1}}&{{a_1}}\\1&{{b_2}}&{{a_2}}\\1&{{b_3}}&{{a_3}}\end{array}} \right|\]
Now interchange the column 1 and column 2 of the right side determinant:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = -\left| {\begin{array}{*{20}{c}}{{b_1}}&1&{{a_1}}\\{{b_2}}&1&{{a_2}}\\{{b_3}}&1&{{a_3}}\end{array}} \right|\]
Now interchange column 2 and column 3 of the right side determinant:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = (-1)^2\left| {\begin{array}{*{20}{c}}{{b_1}}&{{a_1}}&1\\{{b_2}}&{{a_2}}&1\\{{b_3}}&{{a_3}}&1\end{array}} \right|\]
Now interchange column 1 and column 2 of the right side determinant:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = (-1)^3\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Taking absolute signs on both sides:
\[\left| \left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| \right| = \left| (-1)^3\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| \right| \]
Multiply both sides by \[\dfrac{1}{2}\]
\[\left| \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| \right| = \left| \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| \right|\]
Area of triangle whose vertices are \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] = Area of triangle whose vertices are \[({a_1},{b_1}),({a_2},{b_2}),({a_3},{b_3})\]
Therefore, the area of the two triangles is the same.
The correct option is “C”.
Additional information The area of a triangle is always a positive quantity. The area formed by three collinear points of a triangle is zero. The general formula of the area of a triangle is base multiplied by height divided by 2. But in coordinate geometry when three vertices of the triangle are given we use the determinant form to obtain the area of the given triangle.
Note Students often do mistakes when they interchange the rows or columns of a determinant. They forgot to multiply -1 when they interchange the rows. When we interchange two consecutive rows or columns then we multiply -1.
Formula used
The area of a triangle with vertices \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] is
\[\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right|\].
The value of determinant A and its transpose is always equal. That is,
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\\1&1&1\end{array}} \right|\]
Also,
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\\1&1&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&1&1\\{{x_1}}&{{x_2}}&{{x_3}}\\{{y_1}}&{{y_2}}&{{y_3}}\end{array}} \right|\].
Complete step by step solution
The given equation is,
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&1&1\\{{b_1}}&{{b_2}}&{{b_3}}\\{{a_1}}&{{a_2}}&{{a_3}}\end{array}} \right|\]
Now we will transpose the row and column of the right side determinat:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = \left| {\begin{array}{*{20}{c}}1&{{b_1}}&{{a_1}}\\1&{{b_2}}&{{a_2}}\\1&{{b_3}}&{{a_3}}\end{array}} \right|\]
Now interchange the column 1 and column 2 of the right side determinant:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = -\left| {\begin{array}{*{20}{c}}{{b_1}}&1&{{a_1}}\\{{b_2}}&1&{{a_2}}\\{{b_3}}&1&{{a_3}}\end{array}} \right|\]
Now interchange column 2 and column 3 of the right side determinant:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = (-1)^2\left| {\begin{array}{*{20}{c}}{{b_1}}&{{a_1}}&1\\{{b_2}}&{{a_2}}&1\\{{b_3}}&{{a_3}}&1\end{array}} \right|\]
Now interchange column 1 and column 2 of the right side determinant:
\[\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| = (-1)^3\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Taking absolute signs on both sides:
\[\left| \left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| \right| = \left| (-1)^3\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| \right| \]
Multiply both sides by \[\dfrac{1}{2}\]
\[\left| \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}} \right| \right| = \left| \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| \right|\]
Area of triangle whose vertices are \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] = Area of triangle whose vertices are \[({a_1},{b_1}),({a_2},{b_2}),({a_3},{b_3})\]
Therefore, the area of the two triangles is the same.
The correct option is “C”.
Additional information The area of a triangle is always a positive quantity. The area formed by three collinear points of a triangle is zero. The general formula of the area of a triangle is base multiplied by height divided by 2. But in coordinate geometry when three vertices of the triangle are given we use the determinant form to obtain the area of the given triangle.
Note Students often do mistakes when they interchange the rows or columns of a determinant. They forgot to multiply -1 when they interchange the rows. When we interchange two consecutive rows or columns then we multiply -1.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
