
If $k$ is a scalar matrix and $I$is a unit matrix of order $3$then $adj(k\,I)=$.
A. ${{k}^{3}}I$
B. ${{k}^{2}}I$
C. $-{{k}^{3}}I$
D. $-{{k}^{2}}I$
Answer
161.4k+ views
Hint: Scalar matrix can be defined as the square matrix in which all the elements of the principal diagonal are some constant and all the other elements are zero.
Identity matrix can be defined as the square matrix in which all the elements of the principal diagonal are zero and all the other elements are zero. The identity matrix of order $3$is $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$.
Complete step by step solution: We are given that $k$ is a scalar matrix and $I$is a unit matrix of order $3$and we have to find the value of $adj(k\,I)$.
We will take an identity matrix of order $3$ $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$ and a scalar matrix $k$. Now we will multiply both the matrices.
$kI=k\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$
$kI=\left( \begin{matrix}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k \\
\end{matrix} \right)$
Now we will find the adjoint of the matrix.
$adj(kI)=\left( \begin{matrix}
{{k}^{2}} & 0 & 0 \\
0 & {{k}^{2}} & 0 \\
0 & 0 & {{k}^{2}} \\
\end{matrix} \right)$
Taking ${{k}^{2}}$common from the matrix,
\[adj(kI)={{k}^{2}}\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
\[adj(kI)={{k}^{2}}I\]
The value of $adj(k\,I)$is \[adj(kI)={{k}^{2}}I\] where$k$ is a scalar matrix and $I$is a unit matrix of order $
Option ‘B’ is correct
Note: The relationship between the scalar matrix and the unit matrix is $Constant\times Identity\,\,matrix=Scalar\,matrix$.
All of the scalar matrices are symmetric in nature. The zero matrix is also a scalar matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix. Let us take a matrix of order $3$be$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$ . Then the transpose of this matrix will be${{A}^{T}}=\left( \begin{matrix}
{{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\
{{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\
{{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\
\end{matrix} \right)$ where $\left( \begin{matrix}
{{A}_{11}} & {{A}_{12}} & {{A}_{13}} \\
{{A}_{21}} & {{A}_{22}} & {{A}_{23}} \\
{{A}_{31}} & {{A}_{32}} & {{A}_{33}} \\
\end{matrix} \right)$ is the co-factor.
The relationship between the adjoint of the matrix and the identity matrix is $A\,(adj.A)=\,(adj.A).A=|A|I$.
For any of the scalar $k$, the adjoint will be $\,(adj\,kA)=\,{{k}^{n-1}}adj.A$.
Identity matrix can be defined as the square matrix in which all the elements of the principal diagonal are zero and all the other elements are zero. The identity matrix of order $3$is $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$.
Complete step by step solution: We are given that $k$ is a scalar matrix and $I$is a unit matrix of order $3$and we have to find the value of $adj(k\,I)$.
We will take an identity matrix of order $3$ $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$ and a scalar matrix $k$. Now we will multiply both the matrices.
$kI=k\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$
$kI=\left( \begin{matrix}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k \\
\end{matrix} \right)$
Now we will find the adjoint of the matrix.
$adj(kI)=\left( \begin{matrix}
{{k}^{2}} & 0 & 0 \\
0 & {{k}^{2}} & 0 \\
0 & 0 & {{k}^{2}} \\
\end{matrix} \right)$
Taking ${{k}^{2}}$common from the matrix,
\[adj(kI)={{k}^{2}}\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
\[adj(kI)={{k}^{2}}I\]
The value of $adj(k\,I)$is \[adj(kI)={{k}^{2}}I\] where$k$ is a scalar matrix and $I$is a unit matrix of order $
Option ‘B’ is correct
Note: The relationship between the scalar matrix and the unit matrix is $Constant\times Identity\,\,matrix=Scalar\,matrix$.
All of the scalar matrices are symmetric in nature. The zero matrix is also a scalar matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix. Let us take a matrix of order $3$be$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$ . Then the transpose of this matrix will be${{A}^{T}}=\left( \begin{matrix}
{{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\
{{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\
{{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\
\end{matrix} \right)$ where $\left( \begin{matrix}
{{A}_{11}} & {{A}_{12}} & {{A}_{13}} \\
{{A}_{21}} & {{A}_{22}} & {{A}_{23}} \\
{{A}_{31}} & {{A}_{32}} & {{A}_{33}} \\
\end{matrix} \right)$ is the co-factor.
The relationship between the adjoint of the matrix and the identity matrix is $A\,(adj.A)=\,(adj.A).A=|A|I$.
For any of the scalar $k$, the adjoint will be $\,(adj\,kA)=\,{{k}^{n-1}}adj.A$.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
