
If $k$ is a scalar matrix and $I$is a unit matrix of order $3$then $adj(k\,I)=$.
A. ${{k}^{3}}I$
B. ${{k}^{2}}I$
C. $-{{k}^{3}}I$
D. $-{{k}^{2}}I$
Answer
162.6k+ views
Hint: Scalar matrix can be defined as the square matrix in which all the elements of the principal diagonal are some constant and all the other elements are zero.
Identity matrix can be defined as the square matrix in which all the elements of the principal diagonal are zero and all the other elements are zero. The identity matrix of order $3$is $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$.
Complete step by step solution: We are given that $k$ is a scalar matrix and $I$is a unit matrix of order $3$and we have to find the value of $adj(k\,I)$.
We will take an identity matrix of order $3$ $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$ and a scalar matrix $k$. Now we will multiply both the matrices.
$kI=k\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$
$kI=\left( \begin{matrix}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k \\
\end{matrix} \right)$
Now we will find the adjoint of the matrix.
$adj(kI)=\left( \begin{matrix}
{{k}^{2}} & 0 & 0 \\
0 & {{k}^{2}} & 0 \\
0 & 0 & {{k}^{2}} \\
\end{matrix} \right)$
Taking ${{k}^{2}}$common from the matrix,
\[adj(kI)={{k}^{2}}\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
\[adj(kI)={{k}^{2}}I\]
The value of $adj(k\,I)$is \[adj(kI)={{k}^{2}}I\] where$k$ is a scalar matrix and $I$is a unit matrix of order $
Option ‘B’ is correct
Note: The relationship between the scalar matrix and the unit matrix is $Constant\times Identity\,\,matrix=Scalar\,matrix$.
All of the scalar matrices are symmetric in nature. The zero matrix is also a scalar matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix. Let us take a matrix of order $3$be$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$ . Then the transpose of this matrix will be${{A}^{T}}=\left( \begin{matrix}
{{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\
{{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\
{{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\
\end{matrix} \right)$ where $\left( \begin{matrix}
{{A}_{11}} & {{A}_{12}} & {{A}_{13}} \\
{{A}_{21}} & {{A}_{22}} & {{A}_{23}} \\
{{A}_{31}} & {{A}_{32}} & {{A}_{33}} \\
\end{matrix} \right)$ is the co-factor.
The relationship between the adjoint of the matrix and the identity matrix is $A\,(adj.A)=\,(adj.A).A=|A|I$.
For any of the scalar $k$, the adjoint will be $\,(adj\,kA)=\,{{k}^{n-1}}adj.A$.
Identity matrix can be defined as the square matrix in which all the elements of the principal diagonal are zero and all the other elements are zero. The identity matrix of order $3$is $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$.
Complete step by step solution: We are given that $k$ is a scalar matrix and $I$is a unit matrix of order $3$and we have to find the value of $adj(k\,I)$.
We will take an identity matrix of order $3$ $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$ and a scalar matrix $k$. Now we will multiply both the matrices.
$kI=k\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$
$kI=\left( \begin{matrix}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k \\
\end{matrix} \right)$
Now we will find the adjoint of the matrix.
$adj(kI)=\left( \begin{matrix}
{{k}^{2}} & 0 & 0 \\
0 & {{k}^{2}} & 0 \\
0 & 0 & {{k}^{2}} \\
\end{matrix} \right)$
Taking ${{k}^{2}}$common from the matrix,
\[adj(kI)={{k}^{2}}\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
\[adj(kI)={{k}^{2}}I\]
The value of $adj(k\,I)$is \[adj(kI)={{k}^{2}}I\] where$k$ is a scalar matrix and $I$is a unit matrix of order $
Option ‘B’ is correct
Note: The relationship between the scalar matrix and the unit matrix is $Constant\times Identity\,\,matrix=Scalar\,matrix$.
All of the scalar matrices are symmetric in nature. The zero matrix is also a scalar matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix. Let us take a matrix of order $3$be$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$ . Then the transpose of this matrix will be${{A}^{T}}=\left( \begin{matrix}
{{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\
{{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\
{{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\
\end{matrix} \right)$ where $\left( \begin{matrix}
{{A}_{11}} & {{A}_{12}} & {{A}_{13}} \\
{{A}_{21}} & {{A}_{22}} & {{A}_{23}} \\
{{A}_{31}} & {{A}_{32}} & {{A}_{33}} \\
\end{matrix} \right)$ is the co-factor.
The relationship between the adjoint of the matrix and the identity matrix is $A\,(adj.A)=\,(adj.A).A=|A|I$.
For any of the scalar $k$, the adjoint will be $\,(adj\,kA)=\,{{k}^{n-1}}adj.A$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
