
If \[\int\limits_0^\pi {xf\left( {\sin x} \right)} dx = A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\], then what is the value of \[A\]?
A. \[2\pi \]
B. \[\pi \]
C. \[\dfrac{\pi }{4}\]
D. 0
Answer
163.8k+ views
Hint: Here, an equation of the definite integral is given. First, simplify the left-hand side integral by applying the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]. Then, add the left-hand side and this simplified integral and solve it. After that, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\] and solve the integral. In the end, compare the integral with the right-hand side of the originally given integral and get the required answer.
Formula Used:Integration rules:
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Complete step by step solution:The given equation of the definite integral is \[\int\limits_0^\pi {xf\left( {\sin x} \right)} dx = A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Let consider,
\[I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin \left( {\pi - x} \right)} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx + \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {f\left( {\sin x} \right)} dx\]
Here, \[f\left( {\sin x} \right) = f\left( {\sin \left( {\pi - x} \right)} \right)\] because \[\sin \left( {\pi - x} \right) = \sin x\] .
So, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\].
We get,
\[ \Rightarrow 2I = 2\pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow I = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Now compare the integral with the right-hand side of the originally given integral.
We get,
\[A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow A = \pi \]
Option ‘A’ is correct
Note:
Below are some rules to find the definite integral of a function by splitting it into parts:
\[\int\limits_0^{2a} {f\left( x \right)} dx = \int\limits_0^a {f\left( x \right)} dx + \int\limits_0^a {f\left( {2a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 0\] if \[f\left( {2a - x} \right) = - f\left( x \right)\]
Formula Used:Integration rules:
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Complete step by step solution:The given equation of the definite integral is \[\int\limits_0^\pi {xf\left( {\sin x} \right)} dx = A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Let consider,
\[I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin \left( {\pi - x} \right)} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx + \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {f\left( {\sin x} \right)} dx\]
Here, \[f\left( {\sin x} \right) = f\left( {\sin \left( {\pi - x} \right)} \right)\] because \[\sin \left( {\pi - x} \right) = \sin x\] .
So, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\].
We get,
\[ \Rightarrow 2I = 2\pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow I = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Now compare the integral with the right-hand side of the originally given integral.
We get,
\[A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow A = \pi \]
Option ‘A’ is correct
Note:
Below are some rules to find the definite integral of a function by splitting it into parts:
\[\int\limits_0^{2a} {f\left( x \right)} dx = \int\limits_0^a {f\left( x \right)} dx + \int\limits_0^a {f\left( {2a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 0\] if \[f\left( {2a - x} \right) = - f\left( x \right)\]
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
