
If \[\int\limits_0^\pi {xf\left( {\sin x} \right)} dx = A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\], then what is the value of \[A\]?
A. \[2\pi \]
B. \[\pi \]
C. \[\dfrac{\pi }{4}\]
D. 0
Answer
218.4k+ views
Hint: Here, an equation of the definite integral is given. First, simplify the left-hand side integral by applying the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]. Then, add the left-hand side and this simplified integral and solve it. After that, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\] and solve the integral. In the end, compare the integral with the right-hand side of the originally given integral and get the required answer.
Formula Used:Integration rules:
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Complete step by step solution:The given equation of the definite integral is \[\int\limits_0^\pi {xf\left( {\sin x} \right)} dx = A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Let consider,
\[I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin \left( {\pi - x} \right)} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx + \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {f\left( {\sin x} \right)} dx\]
Here, \[f\left( {\sin x} \right) = f\left( {\sin \left( {\pi - x} \right)} \right)\] because \[\sin \left( {\pi - x} \right) = \sin x\] .
So, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\].
We get,
\[ \Rightarrow 2I = 2\pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow I = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Now compare the integral with the right-hand side of the originally given integral.
We get,
\[A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow A = \pi \]
Option ‘A’ is correct
Note:
Below are some rules to find the definite integral of a function by splitting it into parts:
\[\int\limits_0^{2a} {f\left( x \right)} dx = \int\limits_0^a {f\left( x \right)} dx + \int\limits_0^a {f\left( {2a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 0\] if \[f\left( {2a - x} \right) = - f\left( x \right)\]
Formula Used:Integration rules:
\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Complete step by step solution:The given equation of the definite integral is \[\int\limits_0^\pi {xf\left( {\sin x} \right)} dx = A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Let consider,
\[I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin \left( {\pi - x} \right)} \right)} dx\]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_0^\pi {xf\left( {\sin x} \right)} dx + \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi f\left( {\sin x} \right)} dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi {f\left( {\sin x} \right)} dx\]
Here, \[f\left( {\sin x} \right) = f\left( {\sin \left( {\pi - x} \right)} \right)\] because \[\sin \left( {\pi - x} \right) = \sin x\] .
So, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\].
We get,
\[ \Rightarrow 2I = 2\pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow I = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Now compare the integral with the right-hand side of the originally given integral.
We get,
\[A\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
\[ \Rightarrow A = \pi \]
Option ‘A’ is correct
Note:
Below are some rules to find the definite integral of a function by splitting it into parts:
\[\int\limits_0^{2a} {f\left( x \right)} dx = \int\limits_0^a {f\left( x \right)} dx + \int\limits_0^a {f\left( {2a - x} \right)} dx\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]
\[\int\limits_0^{2a} {f\left( x \right)} dx = 0\] if \[f\left( {2a - x} \right) = - f\left( x \right)\]
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

