
If \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \], then what is the value of \[k\]?
A. \[ - a\]
B. \[ - 2a\]
C. \[2a\]
D. \[a\]
Answer
162.3k+ views
Hint: Here, an equation of the definite integral is given. First, substitute \[x = a\cos \theta \] in the given integral. Then, change the values of the limits according to the substituted value. After that, simplify the integral by using the trigonometric identities. Then, solve the integrals and apply the limits to calculate the value of the integral. In the end, compare the value of the integral with the given equation of the integral and get the required answer.
Formula Used: \[\sin 2x = 2\sin x\cos x\]
\[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\]
\[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\]
\[\int {\cos xdx = \sin x + c} \]
\[\int {ndx = nx + c} \]
Integration Rule: \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\]
Complete step by step solution: The given equation of the integral is \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \].
Let consider,
\[I = \int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} \]
Substitute \[x = a\cos \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = a\left( { - \sin \theta } \right)d\theta \]
\[ \Rightarrow dx = - a\sin \theta d\theta \]
The values of the limits are changed as follows:
At \[ - a\] : \[ - a = a\cos \theta \] \[ \Rightarrow \cos \theta = - 1\] \[ \Rightarrow \theta = \pi \]
At \[a\] : \[a = a\cos \theta \] \[ \Rightarrow \cos \theta = 1\] \[ \Rightarrow \theta = 0\]
Now substitute all values in the above integral.
We get,
\[I = \int\limits_\pi ^0 {\sqrt {\dfrac{{a - a\cos \theta }}{{a + a\cos \theta }}} \left( { - a\sin \theta d\theta } \right)} \]
Simplify the integral.
\[I = - \int\limits_\pi ^0 {\sqrt {\dfrac{{a\left( {1 - \cos \theta } \right)}}{{a\left( {1 + \cos \theta } \right)}}} a\sin \theta d\theta } \]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\] .
\[I = \int\limits_0^\pi {\sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} a\sin \theta d\theta } \]
Simplify the trigonometric terms by applying the trigonometric formulas \[\sin 2x = 2\sin x\cos x\], \[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\] and \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
We get,
\[I = \int\limits_0^\pi {a\sqrt {\dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}}} \left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)d\theta } \]
Solve the square root.
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\left( {\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)} \right]d\theta } \]
\[ \Rightarrow I = 2a\int\limits_0^\pi {{{\sin }^2}\dfrac{\theta }{2}d\theta } \]
Again, apply the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{1 - \cos \theta }}{2}} \right]d\theta } \]
\[ \Rightarrow I = a\int\limits_0^\pi {\left[ {1 - \cos \theta } \right]d\theta } \]
Now solve the integrals.
\[ \Rightarrow I = a\left[ {\theta - \sin \theta } \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = a\left[ {\left( {\pi - \sin \pi } \right) - \left( {0 - \sin 0} \right)} \right]\]
\[ \Rightarrow I = a\left[ {\left( {\pi - 0} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = a\pi \]
Thus, \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi \].
Now compare the above equation with the originally given equation.
We get,
\[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi = k\pi \]
\[ \Rightarrow k = a\]
Option ‘D’ is correct
Note: Students often get confused and solve the integral as \[\int {\cos xdx = - \sin x + c} \]. They got confused because the derivative of \[\cos x\] is \[ - \sin x\]. But the correct formula is \[\int {\cos xdx = \sin x + c} \].
Formula Used: \[\sin 2x = 2\sin x\cos x\]
\[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\]
\[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\]
\[\int {\cos xdx = \sin x + c} \]
\[\int {ndx = nx + c} \]
Integration Rule: \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\]
Complete step by step solution: The given equation of the integral is \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \].
Let consider,
\[I = \int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} \]
Substitute \[x = a\cos \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = a\left( { - \sin \theta } \right)d\theta \]
\[ \Rightarrow dx = - a\sin \theta d\theta \]
The values of the limits are changed as follows:
At \[ - a\] : \[ - a = a\cos \theta \] \[ \Rightarrow \cos \theta = - 1\] \[ \Rightarrow \theta = \pi \]
At \[a\] : \[a = a\cos \theta \] \[ \Rightarrow \cos \theta = 1\] \[ \Rightarrow \theta = 0\]
Now substitute all values in the above integral.
We get,
\[I = \int\limits_\pi ^0 {\sqrt {\dfrac{{a - a\cos \theta }}{{a + a\cos \theta }}} \left( { - a\sin \theta d\theta } \right)} \]
Simplify the integral.
\[I = - \int\limits_\pi ^0 {\sqrt {\dfrac{{a\left( {1 - \cos \theta } \right)}}{{a\left( {1 + \cos \theta } \right)}}} a\sin \theta d\theta } \]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\] .
\[I = \int\limits_0^\pi {\sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} a\sin \theta d\theta } \]
Simplify the trigonometric terms by applying the trigonometric formulas \[\sin 2x = 2\sin x\cos x\], \[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\] and \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
We get,
\[I = \int\limits_0^\pi {a\sqrt {\dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}}} \left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)d\theta } \]
Solve the square root.
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\left( {\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)} \right]d\theta } \]
\[ \Rightarrow I = 2a\int\limits_0^\pi {{{\sin }^2}\dfrac{\theta }{2}d\theta } \]
Again, apply the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{1 - \cos \theta }}{2}} \right]d\theta } \]
\[ \Rightarrow I = a\int\limits_0^\pi {\left[ {1 - \cos \theta } \right]d\theta } \]
Now solve the integrals.
\[ \Rightarrow I = a\left[ {\theta - \sin \theta } \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = a\left[ {\left( {\pi - \sin \pi } \right) - \left( {0 - \sin 0} \right)} \right]\]
\[ \Rightarrow I = a\left[ {\left( {\pi - 0} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = a\pi \]
Thus, \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi \].
Now compare the above equation with the originally given equation.
We get,
\[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi = k\pi \]
\[ \Rightarrow k = a\]
Option ‘D’ is correct
Note: Students often get confused and solve the integral as \[\int {\cos xdx = - \sin x + c} \]. They got confused because the derivative of \[\cos x\] is \[ - \sin x\]. But the correct formula is \[\int {\cos xdx = \sin x + c} \].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
