
If \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \], then what is the value of \[k\]?
A. \[ - a\]
B. \[ - 2a\]
C. \[2a\]
D. \[a\]
Answer
232.8k+ views
Hint: Here, an equation of the definite integral is given. First, substitute \[x = a\cos \theta \] in the given integral. Then, change the values of the limits according to the substituted value. After that, simplify the integral by using the trigonometric identities. Then, solve the integrals and apply the limits to calculate the value of the integral. In the end, compare the value of the integral with the given equation of the integral and get the required answer.
Formula Used: \[\sin 2x = 2\sin x\cos x\]
\[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\]
\[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\]
\[\int {\cos xdx = \sin x + c} \]
\[\int {ndx = nx + c} \]
Integration Rule: \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\]
Complete step by step solution: The given equation of the integral is \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \].
Let consider,
\[I = \int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} \]
Substitute \[x = a\cos \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = a\left( { - \sin \theta } \right)d\theta \]
\[ \Rightarrow dx = - a\sin \theta d\theta \]
The values of the limits are changed as follows:
At \[ - a\] : \[ - a = a\cos \theta \] \[ \Rightarrow \cos \theta = - 1\] \[ \Rightarrow \theta = \pi \]
At \[a\] : \[a = a\cos \theta \] \[ \Rightarrow \cos \theta = 1\] \[ \Rightarrow \theta = 0\]
Now substitute all values in the above integral.
We get,
\[I = \int\limits_\pi ^0 {\sqrt {\dfrac{{a - a\cos \theta }}{{a + a\cos \theta }}} \left( { - a\sin \theta d\theta } \right)} \]
Simplify the integral.
\[I = - \int\limits_\pi ^0 {\sqrt {\dfrac{{a\left( {1 - \cos \theta } \right)}}{{a\left( {1 + \cos \theta } \right)}}} a\sin \theta d\theta } \]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\] .
\[I = \int\limits_0^\pi {\sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} a\sin \theta d\theta } \]
Simplify the trigonometric terms by applying the trigonometric formulas \[\sin 2x = 2\sin x\cos x\], \[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\] and \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
We get,
\[I = \int\limits_0^\pi {a\sqrt {\dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}}} \left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)d\theta } \]
Solve the square root.
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\left( {\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)} \right]d\theta } \]
\[ \Rightarrow I = 2a\int\limits_0^\pi {{{\sin }^2}\dfrac{\theta }{2}d\theta } \]
Again, apply the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{1 - \cos \theta }}{2}} \right]d\theta } \]
\[ \Rightarrow I = a\int\limits_0^\pi {\left[ {1 - \cos \theta } \right]d\theta } \]
Now solve the integrals.
\[ \Rightarrow I = a\left[ {\theta - \sin \theta } \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = a\left[ {\left( {\pi - \sin \pi } \right) - \left( {0 - \sin 0} \right)} \right]\]
\[ \Rightarrow I = a\left[ {\left( {\pi - 0} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = a\pi \]
Thus, \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi \].
Now compare the above equation with the originally given equation.
We get,
\[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi = k\pi \]
\[ \Rightarrow k = a\]
Option ‘D’ is correct
Note: Students often get confused and solve the integral as \[\int {\cos xdx = - \sin x + c} \]. They got confused because the derivative of \[\cos x\] is \[ - \sin x\]. But the correct formula is \[\int {\cos xdx = \sin x + c} \].
Formula Used: \[\sin 2x = 2\sin x\cos x\]
\[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\]
\[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\]
\[\int {\cos xdx = \sin x + c} \]
\[\int {ndx = nx + c} \]
Integration Rule: \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\]
Complete step by step solution: The given equation of the integral is \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \].
Let consider,
\[I = \int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} \]
Substitute \[x = a\cos \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = a\left( { - \sin \theta } \right)d\theta \]
\[ \Rightarrow dx = - a\sin \theta d\theta \]
The values of the limits are changed as follows:
At \[ - a\] : \[ - a = a\cos \theta \] \[ \Rightarrow \cos \theta = - 1\] \[ \Rightarrow \theta = \pi \]
At \[a\] : \[a = a\cos \theta \] \[ \Rightarrow \cos \theta = 1\] \[ \Rightarrow \theta = 0\]
Now substitute all values in the above integral.
We get,
\[I = \int\limits_\pi ^0 {\sqrt {\dfrac{{a - a\cos \theta }}{{a + a\cos \theta }}} \left( { - a\sin \theta d\theta } \right)} \]
Simplify the integral.
\[I = - \int\limits_\pi ^0 {\sqrt {\dfrac{{a\left( {1 - \cos \theta } \right)}}{{a\left( {1 + \cos \theta } \right)}}} a\sin \theta d\theta } \]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\] .
\[I = \int\limits_0^\pi {\sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} a\sin \theta d\theta } \]
Simplify the trigonometric terms by applying the trigonometric formulas \[\sin 2x = 2\sin x\cos x\], \[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\] and \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
We get,
\[I = \int\limits_0^\pi {a\sqrt {\dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}}} \left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)d\theta } \]
Solve the square root.
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\left( {\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)} \right]d\theta } \]
\[ \Rightarrow I = 2a\int\limits_0^\pi {{{\sin }^2}\dfrac{\theta }{2}d\theta } \]
Again, apply the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{1 - \cos \theta }}{2}} \right]d\theta } \]
\[ \Rightarrow I = a\int\limits_0^\pi {\left[ {1 - \cos \theta } \right]d\theta } \]
Now solve the integrals.
\[ \Rightarrow I = a\left[ {\theta - \sin \theta } \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = a\left[ {\left( {\pi - \sin \pi } \right) - \left( {0 - \sin 0} \right)} \right]\]
\[ \Rightarrow I = a\left[ {\left( {\pi - 0} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = a\pi \]
Thus, \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi \].
Now compare the above equation with the originally given equation.
We get,
\[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi = k\pi \]
\[ \Rightarrow k = a\]
Option ‘D’ is correct
Note: Students often get confused and solve the integral as \[\int {\cos xdx = - \sin x + c} \]. They got confused because the derivative of \[\cos x\] is \[ - \sin x\]. But the correct formula is \[\int {\cos xdx = \sin x + c} \].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

