
If \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \], then what is the value of \[k\]?
A. \[ - a\]
B. \[ - 2a\]
C. \[2a\]
D. \[a\]
Answer
164.4k+ views
Hint: Here, an equation of the definite integral is given. First, substitute \[x = a\cos \theta \] in the given integral. Then, change the values of the limits according to the substituted value. After that, simplify the integral by using the trigonometric identities. Then, solve the integrals and apply the limits to calculate the value of the integral. In the end, compare the value of the integral with the given equation of the integral and get the required answer.
Formula Used: \[\sin 2x = 2\sin x\cos x\]
\[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\]
\[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\]
\[\int {\cos xdx = \sin x + c} \]
\[\int {ndx = nx + c} \]
Integration Rule: \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\]
Complete step by step solution: The given equation of the integral is \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \].
Let consider,
\[I = \int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} \]
Substitute \[x = a\cos \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = a\left( { - \sin \theta } \right)d\theta \]
\[ \Rightarrow dx = - a\sin \theta d\theta \]
The values of the limits are changed as follows:
At \[ - a\] : \[ - a = a\cos \theta \] \[ \Rightarrow \cos \theta = - 1\] \[ \Rightarrow \theta = \pi \]
At \[a\] : \[a = a\cos \theta \] \[ \Rightarrow \cos \theta = 1\] \[ \Rightarrow \theta = 0\]
Now substitute all values in the above integral.
We get,
\[I = \int\limits_\pi ^0 {\sqrt {\dfrac{{a - a\cos \theta }}{{a + a\cos \theta }}} \left( { - a\sin \theta d\theta } \right)} \]
Simplify the integral.
\[I = - \int\limits_\pi ^0 {\sqrt {\dfrac{{a\left( {1 - \cos \theta } \right)}}{{a\left( {1 + \cos \theta } \right)}}} a\sin \theta d\theta } \]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\] .
\[I = \int\limits_0^\pi {\sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} a\sin \theta d\theta } \]
Simplify the trigonometric terms by applying the trigonometric formulas \[\sin 2x = 2\sin x\cos x\], \[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\] and \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
We get,
\[I = \int\limits_0^\pi {a\sqrt {\dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}}} \left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)d\theta } \]
Solve the square root.
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\left( {\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)} \right]d\theta } \]
\[ \Rightarrow I = 2a\int\limits_0^\pi {{{\sin }^2}\dfrac{\theta }{2}d\theta } \]
Again, apply the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{1 - \cos \theta }}{2}} \right]d\theta } \]
\[ \Rightarrow I = a\int\limits_0^\pi {\left[ {1 - \cos \theta } \right]d\theta } \]
Now solve the integrals.
\[ \Rightarrow I = a\left[ {\theta - \sin \theta } \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = a\left[ {\left( {\pi - \sin \pi } \right) - \left( {0 - \sin 0} \right)} \right]\]
\[ \Rightarrow I = a\left[ {\left( {\pi - 0} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = a\pi \]
Thus, \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi \].
Now compare the above equation with the originally given equation.
We get,
\[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi = k\pi \]
\[ \Rightarrow k = a\]
Option ‘D’ is correct
Note: Students often get confused and solve the integral as \[\int {\cos xdx = - \sin x + c} \]. They got confused because the derivative of \[\cos x\] is \[ - \sin x\]. But the correct formula is \[\int {\cos xdx = \sin x + c} \].
Formula Used: \[\sin 2x = 2\sin x\cos x\]
\[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\]
\[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\]
\[\int {\cos xdx = \sin x + c} \]
\[\int {ndx = nx + c} \]
Integration Rule: \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\]
Complete step by step solution: The given equation of the integral is \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx = k\pi } \].
Let consider,
\[I = \int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} \]
Substitute \[x = a\cos \theta \] in the above integral.
Differentiate the substituted equation.
\[dx = a\left( { - \sin \theta } \right)d\theta \]
\[ \Rightarrow dx = - a\sin \theta d\theta \]
The values of the limits are changed as follows:
At \[ - a\] : \[ - a = a\cos \theta \] \[ \Rightarrow \cos \theta = - 1\] \[ \Rightarrow \theta = \pi \]
At \[a\] : \[a = a\cos \theta \] \[ \Rightarrow \cos \theta = 1\] \[ \Rightarrow \theta = 0\]
Now substitute all values in the above integral.
We get,
\[I = \int\limits_\pi ^0 {\sqrt {\dfrac{{a - a\cos \theta }}{{a + a\cos \theta }}} \left( { - a\sin \theta d\theta } \right)} \]
Simplify the integral.
\[I = - \int\limits_\pi ^0 {\sqrt {\dfrac{{a\left( {1 - \cos \theta } \right)}}{{a\left( {1 + \cos \theta } \right)}}} a\sin \theta d\theta } \]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\] .
\[I = \int\limits_0^\pi {\sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} a\sin \theta d\theta } \]
Simplify the trigonometric terms by applying the trigonometric formulas \[\sin 2x = 2\sin x\cos x\], \[{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}\] and \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
We get,
\[I = \int\limits_0^\pi {a\sqrt {\dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2{{\cos }^2}\dfrac{\theta }{2}}}} \left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)d\theta } \]
Solve the square root.
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}\left( {\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right)} \right]d\theta } \]
\[ \Rightarrow I = 2a\int\limits_0^\pi {{{\sin }^2}\dfrac{\theta }{2}d\theta } \]
Again, apply the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[ \Rightarrow I = 2a\int\limits_0^\pi {\left[ {\dfrac{{1 - \cos \theta }}{2}} \right]d\theta } \]
\[ \Rightarrow I = a\int\limits_0^\pi {\left[ {1 - \cos \theta } \right]d\theta } \]
Now solve the integrals.
\[ \Rightarrow I = a\left[ {\theta - \sin \theta } \right]_0^\pi \]
Apply the upper and lower limits.
\[ \Rightarrow I = a\left[ {\left( {\pi - \sin \pi } \right) - \left( {0 - \sin 0} \right)} \right]\]
\[ \Rightarrow I = a\left[ {\left( {\pi - 0} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = a\pi \]
Thus, \[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi \].
Now compare the above equation with the originally given equation.
We get,
\[\int\limits_{ - a}^a {\sqrt {\dfrac{{a - x}}{{a + x}}} dx} = a\pi = k\pi \]
\[ \Rightarrow k = a\]
Option ‘D’ is correct
Note: Students often get confused and solve the integral as \[\int {\cos xdx = - \sin x + c} \]. They got confused because the derivative of \[\cos x\] is \[ - \sin x\]. But the correct formula is \[\int {\cos xdx = \sin x + c} \].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
