
If $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ where $c$ is a constant of integration, then find the value of $g\left( 0 \right)$.
A. 2
B. e
C. 1
D. ${e^2}$
Answer
160.8k+ views
Hint: In the given question, first we will solve the integration. To solve the integration we need to divide the integration into two integrations such that the derivative of the exponent will be the coefficient of the integration. By using the substitution method we will solve it and compare both sides of the equation to get the value of $g\left( x \right)$. From the equation of $g\left( x \right)$, we can calculate the value of g\left( 0 \right).
Formula Used:
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$
$\dfrac{d}{{dx}}{e^x} = m{e^x}$
$\int {{e^x}dx} = {e^x} + c$
Complete step by step solution:
The given integration is
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now we will solve the left side of the equation.
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx$
$ = \int {\left[ {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + \left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}} \right]} dx$
$ = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} + \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
$ = {I_1} + {I_2}$
Now solving ${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Taking common ${e^x}$ from $\left( {{e^{2x}} + {e^x} - 1} \right)$
$ \Rightarrow {I_1} = \int {{e^x}\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Apply the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ \Rightarrow {I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
Let ${e^x} + {e^{ - x}} + x = z$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$
Substitute $\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$ and ${e^x} + {e^{ - x}} + x = z$ in ${I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
$ \Rightarrow {I_1} = \int {{e^z}dz} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_1} = {e^z} + {c_1}$
Substitute the value of $z$
$ \Rightarrow {I_1} = {e^{{e^x} + {e^{ - x}} + x}} + {c_1}$
Now solving the integration ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Let ${e^x} + {e^{ - x}} = u$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}}} \right)dx = du$
Substitute ${e^x} + {e^{ - x}} = u$ and $\left( {{e^x} - {e^{ - x}}} \right)dx = du$ in ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $.
${I_2} = \int {{e^u}du} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_2} = {e^u} + {c_2}$
Substitute the value of $u$
$ \Rightarrow {I_2} = {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + {c_2}$
Substitute the value of ${I_1}$ and ${I_2}$ in $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {I_1} + {I_2}$
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ Where ${c_1} + {c_2} = c$
Now putting $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ in the given equation $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ and calculating the value of $g\left( x \right)$.
Therefore
${e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}} \cdot {e^x} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now taking common ${e^{\left( {{e^x} + {e^{ - x}}} \right)}}$ from the left side expression
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}}\left( {{e^x} + 1} \right) + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow \left( {{e^x} + 1} \right) = g\left( x \right)$
Now putting $x = 0$ in the above equation
$ \Rightarrow \left( {{e^0} + 1} \right) = g\left( 0 \right)$
Since ${a^0} = 1$, so ${e^0} = 1$
$ \Rightarrow \left( {1 + 1} \right) = g\left( 0 \right)$
$ \Rightarrow g\left( 0 \right) = 2$
Option ‘B’ is correct
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, you need to rewrite the expression under integration so that we can apply the substitution method. By using the substitution method, solve the integration and compare both sides to get the expression of g(x).
Formula Used:
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$
$\dfrac{d}{{dx}}{e^x} = m{e^x}$
$\int {{e^x}dx} = {e^x} + c$
Complete step by step solution:
The given integration is
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now we will solve the left side of the equation.
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx$
$ = \int {\left[ {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + \left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}} \right]} dx$
$ = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} + \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
$ = {I_1} + {I_2}$
Now solving ${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Taking common ${e^x}$ from $\left( {{e^{2x}} + {e^x} - 1} \right)$
$ \Rightarrow {I_1} = \int {{e^x}\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Apply the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ \Rightarrow {I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
Let ${e^x} + {e^{ - x}} + x = z$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$
Substitute $\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$ and ${e^x} + {e^{ - x}} + x = z$ in ${I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
$ \Rightarrow {I_1} = \int {{e^z}dz} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_1} = {e^z} + {c_1}$
Substitute the value of $z$
$ \Rightarrow {I_1} = {e^{{e^x} + {e^{ - x}} + x}} + {c_1}$
Now solving the integration ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Let ${e^x} + {e^{ - x}} = u$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}}} \right)dx = du$
Substitute ${e^x} + {e^{ - x}} = u$ and $\left( {{e^x} - {e^{ - x}}} \right)dx = du$ in ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $.
${I_2} = \int {{e^u}du} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_2} = {e^u} + {c_2}$
Substitute the value of $u$
$ \Rightarrow {I_2} = {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + {c_2}$
Substitute the value of ${I_1}$ and ${I_2}$ in $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {I_1} + {I_2}$
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ Where ${c_1} + {c_2} = c$
Now putting $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ in the given equation $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ and calculating the value of $g\left( x \right)$.
Therefore
${e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}} \cdot {e^x} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now taking common ${e^{\left( {{e^x} + {e^{ - x}}} \right)}}$ from the left side expression
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}}\left( {{e^x} + 1} \right) + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow \left( {{e^x} + 1} \right) = g\left( x \right)$
Now putting $x = 0$ in the above equation
$ \Rightarrow \left( {{e^0} + 1} \right) = g\left( 0 \right)$
Since ${a^0} = 1$, so ${e^0} = 1$
$ \Rightarrow \left( {1 + 1} \right) = g\left( 0 \right)$
$ \Rightarrow g\left( 0 \right) = 2$
Option ‘B’ is correct
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, you need to rewrite the expression under integration so that we can apply the substitution method. By using the substitution method, solve the integration and compare both sides to get the expression of g(x).
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
