
If $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ where $c$ is a constant of integration, then find the value of $g\left( 0 \right)$.
A. 2
B. e
C. 1
D. ${e^2}$
Answer
216k+ views
Hint: In the given question, first we will solve the integration. To solve the integration we need to divide the integration into two integrations such that the derivative of the exponent will be the coefficient of the integration. By using the substitution method we will solve it and compare both sides of the equation to get the value of $g\left( x \right)$. From the equation of $g\left( x \right)$, we can calculate the value of g\left( 0 \right).
Formula Used:
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$
$\dfrac{d}{{dx}}{e^x} = m{e^x}$
$\int {{e^x}dx} = {e^x} + c$
Complete step by step solution:
The given integration is
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now we will solve the left side of the equation.
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx$
$ = \int {\left[ {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + \left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}} \right]} dx$
$ = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} + \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
$ = {I_1} + {I_2}$
Now solving ${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Taking common ${e^x}$ from $\left( {{e^{2x}} + {e^x} - 1} \right)$
$ \Rightarrow {I_1} = \int {{e^x}\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Apply the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ \Rightarrow {I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
Let ${e^x} + {e^{ - x}} + x = z$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$
Substitute $\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$ and ${e^x} + {e^{ - x}} + x = z$ in ${I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
$ \Rightarrow {I_1} = \int {{e^z}dz} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_1} = {e^z} + {c_1}$
Substitute the value of $z$
$ \Rightarrow {I_1} = {e^{{e^x} + {e^{ - x}} + x}} + {c_1}$
Now solving the integration ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Let ${e^x} + {e^{ - x}} = u$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}}} \right)dx = du$
Substitute ${e^x} + {e^{ - x}} = u$ and $\left( {{e^x} - {e^{ - x}}} \right)dx = du$ in ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $.
${I_2} = \int {{e^u}du} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_2} = {e^u} + {c_2}$
Substitute the value of $u$
$ \Rightarrow {I_2} = {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + {c_2}$
Substitute the value of ${I_1}$ and ${I_2}$ in $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {I_1} + {I_2}$
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ Where ${c_1} + {c_2} = c$
Now putting $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ in the given equation $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ and calculating the value of $g\left( x \right)$.
Therefore
${e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}} \cdot {e^x} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now taking common ${e^{\left( {{e^x} + {e^{ - x}}} \right)}}$ from the left side expression
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}}\left( {{e^x} + 1} \right) + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow \left( {{e^x} + 1} \right) = g\left( x \right)$
Now putting $x = 0$ in the above equation
$ \Rightarrow \left( {{e^0} + 1} \right) = g\left( 0 \right)$
Since ${a^0} = 1$, so ${e^0} = 1$
$ \Rightarrow \left( {1 + 1} \right) = g\left( 0 \right)$
$ \Rightarrow g\left( 0 \right) = 2$
Option ‘B’ is correct
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, you need to rewrite the expression under integration so that we can apply the substitution method. By using the substitution method, solve the integration and compare both sides to get the expression of g(x).
Formula Used:
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$
$\dfrac{d}{{dx}}{e^x} = m{e^x}$
$\int {{e^x}dx} = {e^x} + c$
Complete step by step solution:
The given integration is
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now we will solve the left side of the equation.
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx$
$ = \int {\left[ {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + \left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}} \right]} dx$
$ = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} + \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
$ = {I_1} + {I_2}$
Now solving ${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Taking common ${e^x}$ from $\left( {{e^{2x}} + {e^x} - 1} \right)$
$ \Rightarrow {I_1} = \int {{e^x}\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Apply the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ \Rightarrow {I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
Let ${e^x} + {e^{ - x}} + x = z$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$
Substitute $\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$ and ${e^x} + {e^{ - x}} + x = z$ in ${I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
$ \Rightarrow {I_1} = \int {{e^z}dz} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_1} = {e^z} + {c_1}$
Substitute the value of $z$
$ \Rightarrow {I_1} = {e^{{e^x} + {e^{ - x}} + x}} + {c_1}$
Now solving the integration ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Let ${e^x} + {e^{ - x}} = u$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}}} \right)dx = du$
Substitute ${e^x} + {e^{ - x}} = u$ and $\left( {{e^x} - {e^{ - x}}} \right)dx = du$ in ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $.
${I_2} = \int {{e^u}du} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_2} = {e^u} + {c_2}$
Substitute the value of $u$
$ \Rightarrow {I_2} = {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + {c_2}$
Substitute the value of ${I_1}$ and ${I_2}$ in $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {I_1} + {I_2}$
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ Where ${c_1} + {c_2} = c$
Now putting $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ in the given equation $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ and calculating the value of $g\left( x \right)$.
Therefore
${e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}} \cdot {e^x} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now taking common ${e^{\left( {{e^x} + {e^{ - x}}} \right)}}$ from the left side expression
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}}\left( {{e^x} + 1} \right) + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow \left( {{e^x} + 1} \right) = g\left( x \right)$
Now putting $x = 0$ in the above equation
$ \Rightarrow \left( {{e^0} + 1} \right) = g\left( 0 \right)$
Since ${a^0} = 1$, so ${e^0} = 1$
$ \Rightarrow \left( {1 + 1} \right) = g\left( 0 \right)$
$ \Rightarrow g\left( 0 \right) = 2$
Option ‘B’ is correct
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, you need to rewrite the expression under integration so that we can apply the substitution method. By using the substitution method, solve the integration and compare both sides to get the expression of g(x).
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

