
If $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ where $c$ is a constant of integration, then find the value of $g\left( 0 \right)$.
A. 2
B. e
C. 1
D. ${e^2}$
Answer
232.8k+ views
Hint: In the given question, first we will solve the integration. To solve the integration we need to divide the integration into two integrations such that the derivative of the exponent will be the coefficient of the integration. By using the substitution method we will solve it and compare both sides of the equation to get the value of $g\left( x \right)$. From the equation of $g\left( x \right)$, we can calculate the value of g\left( 0 \right).
Formula Used:
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$
$\dfrac{d}{{dx}}{e^x} = m{e^x}$
$\int {{e^x}dx} = {e^x} + c$
Complete step by step solution:
The given integration is
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now we will solve the left side of the equation.
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx$
$ = \int {\left[ {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + \left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}} \right]} dx$
$ = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} + \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
$ = {I_1} + {I_2}$
Now solving ${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Taking common ${e^x}$ from $\left( {{e^{2x}} + {e^x} - 1} \right)$
$ \Rightarrow {I_1} = \int {{e^x}\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Apply the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ \Rightarrow {I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
Let ${e^x} + {e^{ - x}} + x = z$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$
Substitute $\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$ and ${e^x} + {e^{ - x}} + x = z$ in ${I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
$ \Rightarrow {I_1} = \int {{e^z}dz} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_1} = {e^z} + {c_1}$
Substitute the value of $z$
$ \Rightarrow {I_1} = {e^{{e^x} + {e^{ - x}} + x}} + {c_1}$
Now solving the integration ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Let ${e^x} + {e^{ - x}} = u$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}}} \right)dx = du$
Substitute ${e^x} + {e^{ - x}} = u$ and $\left( {{e^x} - {e^{ - x}}} \right)dx = du$ in ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $.
${I_2} = \int {{e^u}du} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_2} = {e^u} + {c_2}$
Substitute the value of $u$
$ \Rightarrow {I_2} = {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + {c_2}$
Substitute the value of ${I_1}$ and ${I_2}$ in $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {I_1} + {I_2}$
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ Where ${c_1} + {c_2} = c$
Now putting $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ in the given equation $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ and calculating the value of $g\left( x \right)$.
Therefore
${e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}} \cdot {e^x} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now taking common ${e^{\left( {{e^x} + {e^{ - x}}} \right)}}$ from the left side expression
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}}\left( {{e^x} + 1} \right) + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow \left( {{e^x} + 1} \right) = g\left( x \right)$
Now putting $x = 0$ in the above equation
$ \Rightarrow \left( {{e^0} + 1} \right) = g\left( 0 \right)$
Since ${a^0} = 1$, so ${e^0} = 1$
$ \Rightarrow \left( {1 + 1} \right) = g\left( 0 \right)$
$ \Rightarrow g\left( 0 \right) = 2$
Option ‘B’ is correct
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, you need to rewrite the expression under integration so that we can apply the substitution method. By using the substitution method, solve the integration and compare both sides to get the expression of g(x).
Formula Used:
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$
$\dfrac{d}{{dx}}{e^x} = m{e^x}$
$\int {{e^x}dx} = {e^x} + c$
Complete step by step solution:
The given integration is
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now we will solve the left side of the equation.
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx$
$ = \int {\left[ {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + \left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}} \right]} dx$
$ = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} + \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
$ = {I_1} + {I_2}$
Now solving ${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
${I_1} = \int {\left( {{e^{2x}} + {e^x} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Taking common ${e^x}$ from $\left( {{e^{2x}} + {e^x} - 1} \right)$
$ \Rightarrow {I_1} = \int {{e^x}\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Apply the formula ${a^m} \cdot {a^n} = {a^{m + n}}$
$ \Rightarrow {I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
Let ${e^x} + {e^{ - x}} + x = z$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$
Substitute $\left( {{e^x} - {e^{ - x}} + 1} \right)dx = dz$ and ${e^x} + {e^{ - x}} + x = z$ in ${I_1} = \int {\left( {{e^x} + 1 - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}} + x} \right)}}dx} $
$ \Rightarrow {I_1} = \int {{e^z}dz} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_1} = {e^z} + {c_1}$
Substitute the value of $z$
$ \Rightarrow {I_1} = {e^{{e^x} + {e^{ - x}} + x}} + {c_1}$
Now solving the integration ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $
Let ${e^x} + {e^{ - x}} = u$
Differentiate both sides
$\left( {{e^x} - {e^{ - x}}} \right)dx = du$
Substitute ${e^x} + {e^{ - x}} = u$ and $\left( {{e^x} - {e^{ - x}}} \right)dx = du$ in ${I_2} = \int {\left( {{e^x} - {e^{ - x}}} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $.
${I_2} = \int {{e^u}du} $
Applying the formula $\int {{e^x}dx} = {e^x} + c$
$ \Rightarrow {I_2} = {e^u} + {c_2}$
Substitute the value of $u$
$ \Rightarrow {I_2} = {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + {c_2}$
Substitute the value of ${I_1}$ and ${I_2}$ in $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {I_1} + {I_2}$
$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ Where ${c_1} + {c_2} = c$
Now putting $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = {e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ in the given equation $\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right)} {e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$ and calculating the value of $g\left( x \right)$.
Therefore
${e^{\left( {{e^x} + {e^{ - x}} + x} \right)}} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}} \cdot {e^x} + {e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
Now taking common ${e^{\left( {{e^x} + {e^{ - x}}} \right)}}$ from the left side expression
$ \Rightarrow {e^{\left( {{e^x} + {e^{ - x}}} \right)}}\left( {{e^x} + 1} \right) + c = g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$
$ \Rightarrow \left( {{e^x} + 1} \right) = g\left( x \right)$
Now putting $x = 0$ in the above equation
$ \Rightarrow \left( {{e^0} + 1} \right) = g\left( 0 \right)$
Since ${a^0} = 1$, so ${e^0} = 1$
$ \Rightarrow \left( {1 + 1} \right) = g\left( 0 \right)$
$ \Rightarrow g\left( 0 \right) = 2$
Option ‘B’ is correct
Note: If an integration is not solved directly, then we will apply the substitution method. In the given question, you need to rewrite the expression under integration so that we can apply the substitution method. By using the substitution method, solve the integration and compare both sides to get the expression of g(x).
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

