
If \[\int {\dfrac{{\left( {\cos x -\ sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx = a\sin^{ - 1}\left( {\dfrac{{\sin x +\cos x}}{b}} \right) + c\] where \[c\] is a constant of integration. Then what is the value of ordered pair \[\left( {a,b} \right)\]?
A. \[\left( {1, - 3} \right)\]
B. \[\left( {1,3} \right)\]
C. \[\left( { - 1,3} \right)\]
D. \[\left( {3,1} \right)\]
Answer
220.2k+ views
Hint: To solve the question we will assume that \[\sin x + \cos x = u\], then find it derivative. After that, we will take square both sides of the equation \[\sin x + \cos x = u\] and calculate the value of \[\sin 2x\] in term of \[u\]. Then substitute the value of \[\sin 2x\] and \[dx\] in the integration \[\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx\]. Then we will apply the formula \[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}d} x = si{n^{ - 1}}\left( {\dfrac{x}{a}} \right) + c\] and substitute the value of \[u\] and compare the result with \[asi{n^{ - 1}}\left( {\dfrac{{sinx + cosx}}{b}} \right) + c\].
Formula used :
Derivative formula:
\[\dfrac{d}{{dx}}\left( {sinx} \right) = cosx\]
\[\dfrac{d}{{dx}}\left( {cosx} \right) = - sinx\]
Integration formula
\[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = si{n^{ - 1}}\left( {\dfrac{x}{a}} \right) + c\]
Identity formula:
\[si{n^2}x + co{s^2}x = 1\]
Complete step by step solution:
The given integral equation is \[\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx = a\sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{b}} \right) + c\].
Let’s solve the above integral.
Let consider,
\[I = \int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx\] \[.....\left( 1 \right)\]
Apply the substitution method of integration.
Put \[\sin x + \cos x = u\] \[.....\left( 2 \right)\]
Differentiate the above equation with respect to \[x\].
\[\cos x - \sin x = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[\left( {\cos x - \sin x} \right)dx = du\]
Take square of equation \[\left( 2 \right)\].
\[{\left( {\sin x + \cos x} \right)^2} = {u^2}\]
\[ \Rightarrow \]\[\sin^{2} x + \cos^{2} x + 2\sin x\cos x = {u^2}\] [Since \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]]
\[ \Rightarrow \]\[1 + \sin 2x = {u^2}\] [Since \[\sin^{2} x + \cos^{2} x = 1\] and \[2\sin x\cos x = \sin 2x\]]
\[ \Rightarrow \]\[\sin 2x = {u^2} - 1\] \[.....\left( 3 \right)\]
Now substitute equations \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
\[I = \int {\dfrac{1}{{\sqrt {8 - \left( {{u^2} - 1} \right)} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {8 - {u^2} + 1} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {9 - {u^2}} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {{3^2} - {u^2}} }}} du\]
Now apply the formula \[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = \sin^{ - 1}\left( {\dfrac{x}{a}} \right) + c\].
\[I = \sin^{ - 1}\left( {\dfrac{u}{3}} \right) + c\]
Resubstitute the value of \[u\].
\[I = \sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{3}} \right) + c\]
Now compare the above equation with the right-hand side of the given integral equation.
Then,
\[a = 1, b = 3\]
Thus, the coordinates of the ordered pair \[\left( {a,b} \right)\] are \[\left( {1,3} \right)\].
Hence the correct option is B.
Note: The integration is the process of finding the antiderivative of the function. We solve the given integral by substitution method of integration. This method is also called as reverse chain rule or a U-substitution method.
Steps of substitution method:
Choose the new variable and make the substitution
Integrate the given function with respect to the substituted variable.
Resubstitute the original value of the variable.
Formula used :
Derivative formula:
\[\dfrac{d}{{dx}}\left( {sinx} \right) = cosx\]
\[\dfrac{d}{{dx}}\left( {cosx} \right) = - sinx\]
Integration formula
\[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = si{n^{ - 1}}\left( {\dfrac{x}{a}} \right) + c\]
Identity formula:
\[si{n^2}x + co{s^2}x = 1\]
Complete step by step solution:
The given integral equation is \[\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx = a\sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{b}} \right) + c\].
Let’s solve the above integral.
Let consider,
\[I = \int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx\] \[.....\left( 1 \right)\]
Apply the substitution method of integration.
Put \[\sin x + \cos x = u\] \[.....\left( 2 \right)\]
Differentiate the above equation with respect to \[x\].
\[\cos x - \sin x = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[\left( {\cos x - \sin x} \right)dx = du\]
Take square of equation \[\left( 2 \right)\].
\[{\left( {\sin x + \cos x} \right)^2} = {u^2}\]
\[ \Rightarrow \]\[\sin^{2} x + \cos^{2} x + 2\sin x\cos x = {u^2}\] [Since \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]]
\[ \Rightarrow \]\[1 + \sin 2x = {u^2}\] [Since \[\sin^{2} x + \cos^{2} x = 1\] and \[2\sin x\cos x = \sin 2x\]]
\[ \Rightarrow \]\[\sin 2x = {u^2} - 1\] \[.....\left( 3 \right)\]
Now substitute equations \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
\[I = \int {\dfrac{1}{{\sqrt {8 - \left( {{u^2} - 1} \right)} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {8 - {u^2} + 1} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {9 - {u^2}} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {{3^2} - {u^2}} }}} du\]
Now apply the formula \[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = \sin^{ - 1}\left( {\dfrac{x}{a}} \right) + c\].
\[I = \sin^{ - 1}\left( {\dfrac{u}{3}} \right) + c\]
Resubstitute the value of \[u\].
\[I = \sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{3}} \right) + c\]
Now compare the above equation with the right-hand side of the given integral equation.
Then,
\[a = 1, b = 3\]
Thus, the coordinates of the ordered pair \[\left( {a,b} \right)\] are \[\left( {1,3} \right)\].
Hence the correct option is B.
Note: The integration is the process of finding the antiderivative of the function. We solve the given integral by substitution method of integration. This method is also called as reverse chain rule or a U-substitution method.
Steps of substitution method:
Choose the new variable and make the substitution
Integrate the given function with respect to the substituted variable.
Resubstitute the original value of the variable.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Excess Pressure Inside a Liquid Drop

Understanding Elastic Collisions in Two Dimensions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Difference Between Exothermic and Endothermic Reactions: Key Differences, Examples & Diagrams

