
If \[\int {\dfrac{{\left( {\cos x -\ sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx = a\sin^{ - 1}\left( {\dfrac{{\sin x +\cos x}}{b}} \right) + c\] where \[c\] is a constant of integration. Then what is the value of ordered pair \[\left( {a,b} \right)\]?
A. \[\left( {1, - 3} \right)\]
B. \[\left( {1,3} \right)\]
C. \[\left( { - 1,3} \right)\]
D. \[\left( {3,1} \right)\]
Answer
219.3k+ views
Hint: To solve the question we will assume that \[\sin x + \cos x = u\], then find it derivative. After that, we will take square both sides of the equation \[\sin x + \cos x = u\] and calculate the value of \[\sin 2x\] in term of \[u\]. Then substitute the value of \[\sin 2x\] and \[dx\] in the integration \[\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx\]. Then we will apply the formula \[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}d} x = si{n^{ - 1}}\left( {\dfrac{x}{a}} \right) + c\] and substitute the value of \[u\] and compare the result with \[asi{n^{ - 1}}\left( {\dfrac{{sinx + cosx}}{b}} \right) + c\].
Formula used :
Derivative formula:
\[\dfrac{d}{{dx}}\left( {sinx} \right) = cosx\]
\[\dfrac{d}{{dx}}\left( {cosx} \right) = - sinx\]
Integration formula
\[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = si{n^{ - 1}}\left( {\dfrac{x}{a}} \right) + c\]
Identity formula:
\[si{n^2}x + co{s^2}x = 1\]
Complete step by step solution:
The given integral equation is \[\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx = a\sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{b}} \right) + c\].
Let’s solve the above integral.
Let consider,
\[I = \int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx\] \[.....\left( 1 \right)\]
Apply the substitution method of integration.
Put \[\sin x + \cos x = u\] \[.....\left( 2 \right)\]
Differentiate the above equation with respect to \[x\].
\[\cos x - \sin x = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[\left( {\cos x - \sin x} \right)dx = du\]
Take square of equation \[\left( 2 \right)\].
\[{\left( {\sin x + \cos x} \right)^2} = {u^2}\]
\[ \Rightarrow \]\[\sin^{2} x + \cos^{2} x + 2\sin x\cos x = {u^2}\] [Since \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]]
\[ \Rightarrow \]\[1 + \sin 2x = {u^2}\] [Since \[\sin^{2} x + \cos^{2} x = 1\] and \[2\sin x\cos x = \sin 2x\]]
\[ \Rightarrow \]\[\sin 2x = {u^2} - 1\] \[.....\left( 3 \right)\]
Now substitute equations \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
\[I = \int {\dfrac{1}{{\sqrt {8 - \left( {{u^2} - 1} \right)} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {8 - {u^2} + 1} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {9 - {u^2}} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {{3^2} - {u^2}} }}} du\]
Now apply the formula \[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = \sin^{ - 1}\left( {\dfrac{x}{a}} \right) + c\].
\[I = \sin^{ - 1}\left( {\dfrac{u}{3}} \right) + c\]
Resubstitute the value of \[u\].
\[I = \sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{3}} \right) + c\]
Now compare the above equation with the right-hand side of the given integral equation.
Then,
\[a = 1, b = 3\]
Thus, the coordinates of the ordered pair \[\left( {a,b} \right)\] are \[\left( {1,3} \right)\].
Hence the correct option is B.
Note: The integration is the process of finding the antiderivative of the function. We solve the given integral by substitution method of integration. This method is also called as reverse chain rule or a U-substitution method.
Steps of substitution method:
Choose the new variable and make the substitution
Integrate the given function with respect to the substituted variable.
Resubstitute the original value of the variable.
Formula used :
Derivative formula:
\[\dfrac{d}{{dx}}\left( {sinx} \right) = cosx\]
\[\dfrac{d}{{dx}}\left( {cosx} \right) = - sinx\]
Integration formula
\[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = si{n^{ - 1}}\left( {\dfrac{x}{a}} \right) + c\]
Identity formula:
\[si{n^2}x + co{s^2}x = 1\]
Complete step by step solution:
The given integral equation is \[\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx = a\sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{b}} \right) + c\].
Let’s solve the above integral.
Let consider,
\[I = \int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\sqrt {8 - \sin 2x} }}} dx\] \[.....\left( 1 \right)\]
Apply the substitution method of integration.
Put \[\sin x + \cos x = u\] \[.....\left( 2 \right)\]
Differentiate the above equation with respect to \[x\].
\[\cos x - \sin x = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow \]\[\left( {\cos x - \sin x} \right)dx = du\]
Take square of equation \[\left( 2 \right)\].
\[{\left( {\sin x + \cos x} \right)^2} = {u^2}\]
\[ \Rightarrow \]\[\sin^{2} x + \cos^{2} x + 2\sin x\cos x = {u^2}\] [Since \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]]
\[ \Rightarrow \]\[1 + \sin 2x = {u^2}\] [Since \[\sin^{2} x + \cos^{2} x = 1\] and \[2\sin x\cos x = \sin 2x\]]
\[ \Rightarrow \]\[\sin 2x = {u^2} - 1\] \[.....\left( 3 \right)\]
Now substitute equations \[\left( 2 \right)\] and \[\left( 3 \right)\] in the equation \[\left( 1 \right)\].
\[I = \int {\dfrac{1}{{\sqrt {8 - \left( {{u^2} - 1} \right)} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {8 - {u^2} + 1} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {9 - {u^2}} }}} du\]
\[ \Rightarrow \]\[I = \int {\dfrac{1}{{\sqrt {{3^2} - {u^2}} }}} du\]
Now apply the formula \[\int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} dx = \sin^{ - 1}\left( {\dfrac{x}{a}} \right) + c\].
\[I = \sin^{ - 1}\left( {\dfrac{u}{3}} \right) + c\]
Resubstitute the value of \[u\].
\[I = \sin^{ - 1}\left( {\dfrac{{\sin x + \cos x}}{3}} \right) + c\]
Now compare the above equation with the right-hand side of the given integral equation.
Then,
\[a = 1, b = 3\]
Thus, the coordinates of the ordered pair \[\left( {a,b} \right)\] are \[\left( {1,3} \right)\].
Hence the correct option is B.
Note: The integration is the process of finding the antiderivative of the function. We solve the given integral by substitution method of integration. This method is also called as reverse chain rule or a U-substitution method.
Steps of substitution method:
Choose the new variable and make the substitution
Integrate the given function with respect to the substituted variable.
Resubstitute the original value of the variable.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

