
If \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx = f\left( x \right) + c\], the find \[f\left( x \right)\].
A. \[2\log \left( {{e^x} + 1} \right)\]
B. \[2\log \left| {{e^{2x}} - 1} \right|\]
C. \[2\log \left| {{e^x} + 1} \right| - x\]
D. \[2\log \left( {{e^{2x}} + 1} \right)\]
Answer
161.1k+ views
Hint: First we will assume \[u = {e^x}\]. Then we calculate its derivatives and find \[dx\] in terms of \[du\] and \[u\]. After that, we will rewrite the integration in terms \[du\] and \[u\]. Then rewrite the expression as \[\dfrac{1}{u}\] and \[\dfrac{1}{{u + 1}}\] , then integrate it by using the formula \[\int {\dfrac{1}{u}} du = \log \left| u \right| + c\]. In the end we will substitute \[u = {e^x}\] to get desired result.
Formula Used:
\[\dfrac{d}{{dx}}{e^x} = {e^x}\]
\[\int {\dfrac{1}{u}} du = \log \left| u \right| + c\]
\[{\log _a}{a^x} = x\]
Complete step by step solution:
Given equation is \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx = f\left( x \right) + c\]
Assume that \[u = {e^x}\]
Differentiate both sides by \[x\]
\[du = {e^x}dx\]
\[ \Rightarrow dx = \dfrac{{du}}{{{e^x}}}\]
Substitute \[{e^x} = u\]
\[ \Rightarrow dx = \dfrac{{du}}{u}\]
Now putting \[dx = \dfrac{{du}}{u}\] and \[{e^x} = u\] in \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx\]
\[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx\]
\[ = \int {\dfrac{{u - 1}}{{u + 1}}} \cdot \dfrac{{du}}{u}\]
\[ = \int {\dfrac{{u - 1}}{{u\left( {u + 1} \right)}}} du\]
Add and subtract u with numerator
\[ = \int {\dfrac{{2u - u - 1}}{{u\left( {u + 1} \right)}}} du\]
\[ = \int {\dfrac{{2u - \left( {u + 1} \right)}}{{u\left( {u + 1} \right)}}} du\]
Use the reverse formula \[\dfrac{{a + b}}{c} = \dfrac{a}{c} + \dfrac{b}{c}\]
\[ = \int {\dfrac{{2u}}{{u\left( {u + 1} \right)}}} du + \int {\dfrac{{ - \left( {u + 1} \right)}}{{u\left( {u + 1} \right)}}} du\]
Cancel out common terms
\[ = 2\int {\dfrac{1}{{\left( {u + 1} \right)}}} du - \int {\dfrac{1}{u}} du\]
Apply the formula \[\int {\dfrac{1}{u}} du = \log \left| u \right| + c\]
\[ = 2\log \left| {u + 1} \right| - \log \left| u \right| + c\]
Now substitute \[u = {e^x}\]
\[ = 2\log \left| {{e^x} + 1} \right| - \log \left| {{e^x}} \right| + c\]
Applying the formula \[{\log _a}{a^x} = x\]
\[ = 2\log \left| {{e^x} + 1} \right| - x + c\]
Putting \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx\]\[ = 2\log \left| {{e^x} + 1} \right| - x + c\] in the equation \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx = f\left( x \right) + c\] and compute \[f\left( x \right)\].
\[2\log \left| {{e^x} + 1} \right| - x + c = f\left( x \right) + c\]
\[ \Rightarrow f\left( x \right) = 2\log \left| {{e^x} + 1} \right| - x\]
Hence option C is the correct option.
Note: Students often do a common mistake when they use substitution method. They do not change \[dx\] to \[du\]. They solve the integration as \[\int {\dfrac{{u - 1}}{{u + 1}}} du\] and get an incorrect result. The correct integration is \[\int {\dfrac{{u - 1}}{{u\left( {u + 1} \right)}}} du\].
Formula Used:
\[\dfrac{d}{{dx}}{e^x} = {e^x}\]
\[\int {\dfrac{1}{u}} du = \log \left| u \right| + c\]
\[{\log _a}{a^x} = x\]
Complete step by step solution:
Given equation is \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx = f\left( x \right) + c\]
Assume that \[u = {e^x}\]
Differentiate both sides by \[x\]
\[du = {e^x}dx\]
\[ \Rightarrow dx = \dfrac{{du}}{{{e^x}}}\]
Substitute \[{e^x} = u\]
\[ \Rightarrow dx = \dfrac{{du}}{u}\]
Now putting \[dx = \dfrac{{du}}{u}\] and \[{e^x} = u\] in \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx\]
\[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx\]
\[ = \int {\dfrac{{u - 1}}{{u + 1}}} \cdot \dfrac{{du}}{u}\]
\[ = \int {\dfrac{{u - 1}}{{u\left( {u + 1} \right)}}} du\]
Add and subtract u with numerator
\[ = \int {\dfrac{{2u - u - 1}}{{u\left( {u + 1} \right)}}} du\]
\[ = \int {\dfrac{{2u - \left( {u + 1} \right)}}{{u\left( {u + 1} \right)}}} du\]
Use the reverse formula \[\dfrac{{a + b}}{c} = \dfrac{a}{c} + \dfrac{b}{c}\]
\[ = \int {\dfrac{{2u}}{{u\left( {u + 1} \right)}}} du + \int {\dfrac{{ - \left( {u + 1} \right)}}{{u\left( {u + 1} \right)}}} du\]
Cancel out common terms
\[ = 2\int {\dfrac{1}{{\left( {u + 1} \right)}}} du - \int {\dfrac{1}{u}} du\]
Apply the formula \[\int {\dfrac{1}{u}} du = \log \left| u \right| + c\]
\[ = 2\log \left| {u + 1} \right| - \log \left| u \right| + c\]
Now substitute \[u = {e^x}\]
\[ = 2\log \left| {{e^x} + 1} \right| - \log \left| {{e^x}} \right| + c\]
Applying the formula \[{\log _a}{a^x} = x\]
\[ = 2\log \left| {{e^x} + 1} \right| - x + c\]
Putting \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx\]\[ = 2\log \left| {{e^x} + 1} \right| - x + c\] in the equation \[\int {\dfrac{{{e^x} - 1}}{{{e^x} + 1}}} dx = f\left( x \right) + c\] and compute \[f\left( x \right)\].
\[2\log \left| {{e^x} + 1} \right| - x + c = f\left( x \right) + c\]
\[ \Rightarrow f\left( x \right) = 2\log \left| {{e^x} + 1} \right| - x\]
Hence option C is the correct option.
Note: Students often do a common mistake when they use substitution method. They do not change \[dx\] to \[du\]. They solve the integration as \[\int {\dfrac{{u - 1}}{{u + 1}}} du\] and get an incorrect result. The correct integration is \[\int {\dfrac{{u - 1}}{{u\left( {u + 1} \right)}}} du\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
