
If in a triangle ABC, \[b = \sqrt 3 \], c = 1, and \[B - C = {90^ \circ }\], then find \[\angle A\].
A. \[{30^ \circ }\]
B. \[{45^ \circ }\]
C. \[{75^ \circ }\]
D. \[{15^ \circ }\]
Answer
164.1k+ views
Hint: To solve the given question we will derive a formula \[\tan \dfrac{{B - C}}{2} = \dfrac{{b - c}}{{b + c}}\cot \dfrac{A}{2}\] by sine law for an oblique triangle, sum and difference of two sine of angles formula. Then we simply substitute the value of b, c, and B – C in the formula to get the required solution.
Formula Used:Sine Law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Sum of sine angles:
\[\sin A + \sin B = 2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Difference of sine angles:
\[\sin A - \sin B = 2\cos \dfrac{{A + B}}{2}\sin \dfrac{{A - B}}{2}\]
Complete step by step solution:We know the sine law
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Taking last two ratios of the sine law:
\[\dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
\[\dfrac{b}{c} = \dfrac{{\sin B}}{{\sin C}}\]
Applying componendo and dividendo rule:
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \dfrac{{\sin B + \sin C}}{{\sin B - \sin C}}\]
Now applying Difference of sine angles and Sum of sine angles formula:
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{{B - C}}{2}}}{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}\]
Cancel out 2 from denominator and numerator:
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{{B - C}}{2}}}{{\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}\]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \tan \dfrac{{B + C}}{2}\cot \dfrac{{B - C}}{2}\]
We know that, \[B + C = {180^ \circ } - A\]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \tan \dfrac{{{{180}^ \circ } - A}}{2}\cot \dfrac{{B - C}}{2}\]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \tan \left( {{{90}^ \circ } - \dfrac{A}{2}} \right)\cot \dfrac{{B - C}}{2}\]
Apply formula of complementary angle formula \[\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta \]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \cot \dfrac{A}{2}\cot \dfrac{{B - C}}{2}\]
\[ \Rightarrow \tan \dfrac{{B - C}}{2} = \dfrac{{b - c}}{{b + c}}\cot \dfrac{A}{2}\]
Now putting \[b = \sqrt 3 \], c = 1, and \[B - C = {90^ \circ }\]
\[ \Rightarrow \tan \dfrac{{{{90}^ \circ }}}{2} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\cot \dfrac{A}{2}\]
\[ \Rightarrow \tan {45^ \circ } = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\cot \dfrac{A}{2}\]
\[ \Rightarrow 1 \cdot \tan \dfrac{A}{2} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\]
\[ \Rightarrow \tan \dfrac{A}{2} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\]
Rationalize the denominator:
\[ \Rightarrow \tan \dfrac{A}{2} = \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \tan \dfrac{A}{2} = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}}\]
\[ \Rightarrow \tan \dfrac{A}{2} = 2 - \sqrt 3 \]
We know that \[\tan {15^ \circ } = 2 - \sqrt 3 \]
\[ \Rightarrow \tan \dfrac{A}{2} = \tan {15^ \circ }\]
\[ \Rightarrow \dfrac{A}{2} = {15^ \circ }\]
\[ \Rightarrow A = {30^ \circ }\]
Option ‘A’ is correct
Note: Students often do mistake the value of \[\tan {15^ \circ }\] and \[\tan {75^ \circ }\]. The value of \[\tan {15^ \circ }\] is \[2 - \sqrt 3 \]. The value of \[\tan {75^ \circ }\] is \[2 + \sqrt 3 \].
Formula Used:Sine Law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Sum of sine angles:
\[\sin A + \sin B = 2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}\]
Difference of sine angles:
\[\sin A - \sin B = 2\cos \dfrac{{A + B}}{2}\sin \dfrac{{A - B}}{2}\]
Complete step by step solution:We know the sine law
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Taking last two ratios of the sine law:
\[\dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
\[\dfrac{b}{c} = \dfrac{{\sin B}}{{\sin C}}\]
Applying componendo and dividendo rule:
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \dfrac{{\sin B + \sin C}}{{\sin B - \sin C}}\]
Now applying Difference of sine angles and Sum of sine angles formula:
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{{B - C}}{2}}}{{2\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}\]
Cancel out 2 from denominator and numerator:
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{{B - C}}{2}}}{{\cos \dfrac{{B + C}}{2}\sin \dfrac{{B - C}}{2}}}\]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \tan \dfrac{{B + C}}{2}\cot \dfrac{{B - C}}{2}\]
We know that, \[B + C = {180^ \circ } - A\]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \tan \dfrac{{{{180}^ \circ } - A}}{2}\cot \dfrac{{B - C}}{2}\]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \tan \left( {{{90}^ \circ } - \dfrac{A}{2}} \right)\cot \dfrac{{B - C}}{2}\]
Apply formula of complementary angle formula \[\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta \]
\[ \Rightarrow \dfrac{{b + c}}{{b - c}} = \cot \dfrac{A}{2}\cot \dfrac{{B - C}}{2}\]
\[ \Rightarrow \tan \dfrac{{B - C}}{2} = \dfrac{{b - c}}{{b + c}}\cot \dfrac{A}{2}\]
Now putting \[b = \sqrt 3 \], c = 1, and \[B - C = {90^ \circ }\]
\[ \Rightarrow \tan \dfrac{{{{90}^ \circ }}}{2} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\cot \dfrac{A}{2}\]
\[ \Rightarrow \tan {45^ \circ } = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\cot \dfrac{A}{2}\]
\[ \Rightarrow 1 \cdot \tan \dfrac{A}{2} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\]
\[ \Rightarrow \tan \dfrac{A}{2} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\]
Rationalize the denominator:
\[ \Rightarrow \tan \dfrac{A}{2} = \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \tan \dfrac{A}{2} = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}}\]
\[ \Rightarrow \tan \dfrac{A}{2} = 2 - \sqrt 3 \]
We know that \[\tan {15^ \circ } = 2 - \sqrt 3 \]
\[ \Rightarrow \tan \dfrac{A}{2} = \tan {15^ \circ }\]
\[ \Rightarrow \dfrac{A}{2} = {15^ \circ }\]
\[ \Rightarrow A = {30^ \circ }\]
Option ‘A’ is correct
Note: Students often do mistake the value of \[\tan {15^ \circ }\] and \[\tan {75^ \circ }\]. The value of \[\tan {15^ \circ }\] is \[2 - \sqrt 3 \]. The value of \[\tan {75^ \circ }\] is \[2 + \sqrt 3 \].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
